М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Red4521
Red4521
05.10.2022 04:28 •  Математика

Укажите верную математическую запись а)540602>54602,б)540602=54602,в)540602<45602

👇
Ответ:
Диана2404
Диана2404
05.10.2022

1) 540602>54602

2)540602>54602

3)540602>45602

везде будет знак больше

4,5(5 оценок)
Ответ:
vaneeva06
vaneeva06
05.10.2022

Пошаговое объяснение:

546002>54602,546002>54602,546002>456

Это правильно

4,6(76 оценок)
Открыть все ответы
Ответ:
fgggg2qq
fgggg2qq
05.10.2022

ответ:Сколько учеников принимали участие в олимпиаде по математике

264:8•3=99 учеников

264-99=165 учеников не принимали участие в олимпиаде по математике,это решта

Сколько учеников были на олимпиаде по физике?

165:15•7=77 учеников

Решту примем за 1 целую часть и переведём ее в дробь

1=15/15 и узнаём какая часть учеников была на олимпиаде по информатике

15/15-7/15=8/15

А теперь-сколько учеников составляет

8/15

165:15•8=88 учеников

Хотя можно было о них узнать проще

165-77=88 учеников

Проверка

77+88+99=264 ученика

Пошаговое объяснение:

4,7(55 оценок)
Ответ:
DevilWoods
DevilWoods
05.10.2022

ответ:

пошаговое объяснение:

xy*dx+(1+y^2)*\sqrt{1+x^2}*dy=0|*\frac{1}{y\sqrt{1+x^2}}{xdx}{\sqrt{1+x^2}}=-\frac{(1+y^2)dy}{y} \frac{d(1+x^2)}{\sqrt{1+x^2}}=\int(-\frac{1}{y}-y){1+x^2}=-ln|y|-\frac{y^2}{2}+{1+x^2}+ln|y|+\frac{y^2}{2}={1+x^2}+ln|y|+\frac{y^2}{2})'=c'{x}{\sqrt{1+x^2}}+\frac{y'}{y}+yy'=0|*y\sqrt{1+x^2}dx\\xydx+(1+y^2)\sqrt{1+x^2}dy

в начале при делении потеряли ответ y=0, поэтому полный ответ:

(\sqrt{1+x^2}+ln|y|+\frac{y^2}{2}=c\ ; y=0

(1+x^2)*y'+y*\sqrt{1+x^2}=xy|*\frac{dx}{y(1+x^2)}{dy}{y}+\frac{dx}{\sqrt{1+x^2}}=\frac{xdx}{1+x^2}{dy}{y}=\frac{1}{2}\frac{d(1+x^2)}{1+x^2}-\frac{dx}{\sqrt{1+x^2}}{dy}{y}=\frac{1}{2}\int\frac{d(1+x^2)}{1+x^2}-\int\frac{dx}{\sqrt{1+x^2}}\\ln|y|=\frac{1}{2}ln|1+x^2|-ln|x+\sqrt{1+x^2}|+c\\ln|y|=ln|\sqrt{1+x^2}|-ln|x+\sqrt{1+x^2}|+ln|c|\\ln|y|=ln|\frac{c\sqrt{1+x^2}}{x+\sqrt{1+x^2}}|\\y=\frac{c\sqrt{1+x^2}}{x+\sqrt{1+x^2}}\\y*\frac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}}=c

проверка:

(y*\frac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}})'=c'\\y'*\frac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}}+y*{\frac{(1+\frac{x}{\sqrt{1+x^2}})*\sqrt{1+x^2}-\frac{x}{\sqrt{1+x^2}}*(x+\sqrt{1+x^2})}{1+x^2}}=0\\y'*\frac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}}+y*{\frac{(\frac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}})*\sqrt{1+x^2}-\frac{x}{\sqrt{1+x^2}}*(x+\sqrt{1+x^2})}{1+x^2}}=0|*\frac{\sqrt{1+x^2}}{x+\sqrt{1+x^2}}\\y'+y\frac{\sqrt{1+x^2}-x}{1+x^2}=0|*(1++x^2)y'+y\sqrt{1+x^2}-xy=+x^2)y'+y\sqrt{1+x^2}=xy

в этом примере мы тоже теряем решение y=0, но дописывать его не надо т.к. у=0 при с=0

4,5(81 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ