В первом номере раскроем скобки и приведем подобные слпгаемые а)12аb-5а-ab-6а=11ab-11а б) 15х³-10х²-20х 2.вынесем общий множитель за скобки 3х²+9ху=3х(х+3у) 10х∧5-5х=5х(2х∧4-1) 3.раскроем скобки и решим уравнение 4х+4=15х-14х-35 4х-15х+14х=-35-4 3х=-39 х=-13 4. пусть х дет делает ученик, мастер делает х+6 8х=5(х+6) 8х=5х+30 8х-5х=30 3х=30 х=10 дет в час делает ученик 10+6=16 дет мастер 5. наименьший общий знаменатель 12. домножим 8х-4х-2=9х-15 4х-9х=-15+2 -5х=-13 х=13/5=7,5 6) раскроем скобки 4ха+4х²+4ху+4а²-4ах-4ау-4ух+4уа+4у²=4х²+4а²+4у²
Среднее арифметическое набора чисел определяется как их сумма, деленная на их количество. То есть сумма всех чисел набора делится на количество чисел в этом наборе.
Наиболее простой случай - найти среднее арифметическое двух чисел x1 и x2. Тогда их среднее арифметическое X = (x1+x2)/2. Например, X = (6+2)/2 = 4 - среднее арифметическое чисел 6 и 2. 2 Общая формула для нахождения среднего арифметического n чисел будет выглядеть так: X = (x1+x2+...+xn)/n. Ее можно также записать в виде: X = (1/n)Σxi, где суммирование ведется по индексу i от i = 1 до i = n.
К примеру, среднее арифметическое трех чисел X = (x1+x2+x3)/3, пяти чисел - (x1+x2+x3+x4+x5)/5. 3 Интерес представляет ситуация, когда набор чисел представляет собой члены арифметической прогрессии. Как известно, члены арифметической прогрессии равны a1+(n-1)d, где d - шаг прогрессии, а n - номер члена прогрессии.
Пусть a1, a1+d, a1+2d,...a1+(n-1)d - члены арифметической прогрессии. Их среднее арифметическое равно S = (a1+a1+d+a1+2d+...+a1+(n-1)d)/n = (na1+d+2d+...+(n-1)d)/n = a1+(d+2d+...+(n-2)d+(n-1)d)/n = a1+(d+2d+...+dn-d+dn-2d)/n = a1+(n*d*(n-1)/2)/n = a1+dn/2 = (2a1+d(n-1))/2 = (a1+an)/2. Таким образом среднее арифметическое членов арифметической прогрессии равно среднему арифметическому его первого и последнего членов. 4 Также справедливо свойство, что каждый член арифметической прогрессии равен среднему арифметическому предыдущего и последующего члена прогрессии: an = (a(n-1)+a(n+1))/2, где a(n-1), an, a(n+1) - идущие друг за другом члены последовательности.
ответ:x1=9;x2=-9
|x|-5=4
|x|=4+5
|x|=9
x1=9;x2=-9
Пошаговое объяснение: