М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maxxx1114
maxxx1114
28.05.2020 09:07 •  Математика

Заполни пропуски чтобы равенства были верными 2 м 04 см =

👇
Ответ:
113020021
113020021
28.05.2020
2м 04см=204см (это правильно наверное)
4,8(17 оценок)
Открыть все ответы
Ответ:
Ivankozyr69gmail
Ivankozyr69gmail
28.05.2020
Матрица, соответствующая данной квадратичной форме:
A=\begin{pmatrix}
 1 & -1 & 3 & -2 \\
 -1 & 1 & -2 & 3 \\
 3 & -2 & 1 & -1 \\
 -2 & 3 & -1 & 1 
\end{pmatrix}

Нужно найти собственные числа и собственные вектора этой матрицы. Собственные числа находим из уравнения det(A - λE) = 0:
\det (A-\lambda E)=\begin{vmatrix}1-\lambda & -1 & 3 & -2 \\ -1 & 1-\lambda & -2 & 3 \\ 3 & -2 & 1-\lambda & -1 \\ -2 & 3 & -1 & 1-\lambda\end{vmatrix}=\dots

Прибавим к первой строке все остальные строки, после вынесения общего множителя обнулим первый столбик во всех строках, кроме первой:
\dots=\begin{vmatrix}1-\lambda & 1-\lambda & 1-\lambda & 1-\lambda \\ -1 & 1-\lambda & -2 & 3 \\ 3 & -2 & 1-\lambda & -1 \\ -2 & 3 & -1 & 1-\lambda\end{vmatrix}=\\=(1-\lambda)\begin{vmatrix}1 & 1 & 1 & 1 \\ -1 & 1-\lambda & -2 & 3 \\ 3 & -2 & 1-\lambda & -1 \\ -2 & 3 & -1 & 1-\lambda\end{vmatrix}=\\=(1-\lambda)\begin{vmatrix}1 & 1 & 1 & 1 \\ 0 & 2-\lambda & -1 & 4 \\ 0 & -5 & -2-\lambda & -4 \\ 0 & 5 & 1 & 3-\lambda\end{vmatrix}=\dots

Раскладываем определитель по первому столбцу. Опустим пока множитель (1 - λ), сложим прибавим к третьей строчке вторую, вынесем общий множитель и обнулим третий столбец везде, кроме последней строки:
\dfrac{\dots}{(1-\lambda)}=\begin{vmatrix}2-\lambda & -1 & 4 \\ -5 & -2-\lambda & -4 \\ 5 & 1 & 3-\lambda\end{vmatrix}=\begin{vmatrix}2-\lambda & -1 & 4 \\ -5 & -2-\lambda & -4 \\ 0 & -1-\lambda & -1-\lambda\end{vmatrix}=\\=(-1-\lambda)\begin{vmatrix}2-\lambda & -1 & 4 \\ -5 & -2-\lambda & -4 \\ 0 & 1 & 1\end{vmatrix}=(-1-\lambda)\begin{vmatrix}2-\lambda & -5 & 0 \\ -5 & 2-\lambda & 0 \\ 0 & 1 & 1\end{vmatrix}=\dots

Раскладываем определитель по третьему столбцу, после отбрасывания множителей остается определитель матрицы 2x2, который равен 
(2-\lambda)^2-(-5)^2=(-3-\lambda)(7-\lambda)

Итак, 
\det (A-\lambda E)=(1-\lambda)(-1-\lambda)(-3-\lambda)(7-\lambda)=0\\
\lambda_{1,2,3,4}\in\{\pm 1,-3,7\}

Находим собственные векторы:
1) с.ч. = 1
Сумма всех строк равна 0, выкинем последнюю. Приведем матрицу к красивому виду (насколько сможем):
A-E=\begin{pmatrix} 0 & -1 & 3 & -2 \\ -1 & 0 & -2 & 3 \\ 3 & -2 & 0 & -1 \\ -2 & 3 & -1 & 0 \end{pmatrix}\sim \begin{pmatrix} 0 & -1 & 3 & -2 \\ -1 & 0 & -2 & 3 \\ 3 & -2 & 0 & -1 \end{pmatrix}\sim \\\sim \begin{pmatrix} 1 & 0 & 2 & -3 \\ 0 & -1 & 3 & -2 \\ 0 & -2 & -6 & 8 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & -3 \\ 0 & -1 & 3 & -2 \\ 0 & 1 & 3 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}

Из полученного вида матрицы получаем, что уравнению удовлетворяют все вектора вида (a, a, a, a); с.в. (1, 1, 1, 1)

2) c.ч. = -1
A+E=\begin{pmatrix} 2 & -1 & 3 & -2 \\ -1 & 2 & -2 & 3 \\ 3 & -2 & 2 & -1 \\ -2 & 3 & -1 & 2 \end{pmatrix}\sim \begin{pmatrix} 1&0&0&1\\0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}
с.в. (1, 1, -1, -1)

3) с.ч. = -3
A+3E=\begin{pmatrix} 4 & -1 & 3 & -2 \\ -1 & 4 & -2 & 3 \\ 3 & -2 & 4 & -1 \\ -2 & 3 & -1 & 4 \end{pmatrix}\sim \begin{pmatrix} 1&1&0&0\\0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}
с.в. (1, -1, -1, 1)

4) с.ч. = 7
A-7E=\begin{pmatrix} -6 & -1 & 3 & -2 \\ -1 & -6 & -2 & 3 \\ 3 & -2 & -6 & -1 \\ -2 & 3 & -1 & -6 \end{pmatrix}\sim \begin{pmatrix} 1&1&0&0\\0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}
c.в. (1, -1, 1, -1)

Собственные вектора уже ортогональны, но еще не отнормированы. Длина каждого равна 1/2, так что окончательно получаем, что под действием замены
\begin{pmatrix}x_1\\x_2\\x_3\\x_4\end{pmatrix}=\begin{pmatrix}\frac12&\frac12&\frac12&\frac12\\\frac12&\frac12&-\frac12&-\frac12\\\frac12&-\frac12&-\frac12&\frac12\\\frac12&-\frac12&\frac12&-\frac12\end{pmatrix}\begin{pmatrix}y_1\\y_2\\y_3\\y_4\end{pmatrix}
(по столбцам записаны собственные векторы) квадратичная форма примет вид
y_1^2-y_2^2-3y_3^2+7y_4^2
4,6(12 оценок)
Ответ:
мскисуля2
мскисуля2
28.05.2020
Скрипка - струнно - смычковый музыкальный инструмент высокого регистра.
Скрипка один из важнейших инструментов современного симфонического оркестра.
Ни один другой инструмент не обладает таким сочетанием красоты, выразительности звука и технической подвижности.
Формы скрипки установились к XVI веку. К этому веку и началу XVII века относятся известные изготовители скрипок — семейство Амати. Их инструменты отличаются прекрасной формой и превосходным материалом. Скрипка является сольным инструментом с XVII века.
Скрипка имеет четыре струны, настроенные по квинтам. 
Корпус скрипки имеет овальную форму с округлыми выемками по бокам, образующими «талию». Гриф скрипки — длинная пластинка из чёрного дерева или из пластмассы.
4,6(70 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ