Пошаговое объяснение:
{х+5у=8 |×2
{-2х+3у=10
{2х+10у=16
{-2х+3у=10
+ ———–
13у=26
У=2
Х+5×2=8
Х+10=8
Х=8 - 10
Х= - 2
ответ : (-2;2)
Так как не сказано, с какой стороны будет касание, то решений будет 2.
Так как заданная прямая, к которой будет касание, вертикальна, то центр окружности будет левее и правее её на величину радиуса, то есть появилось ещё одно условие расположения центра окружности.
Это будут прямые х = 1 - 2 = -1 и х = 1 + 2 = 3.
Находим координаты центров окружностей как точки пересечения заданной прямой x+2y-1=0 и двух найденных х = -1 и х = 3.
Подставляем значения х в уравнение прямой x+2y-1=0.
-1 + 2у -1 = 0,
2у = 2, у = 2/2 = 1.
Один центр найден: А(-1; 1).
Аналогично находим:
3 + 2у -1 = 0,
2у = -2, у = -2/2 = -1.
В(3; -1).
ответ: (x + 1)² + (y - 1)² = 2².
(x - 3)² + (y + 1)² = 2².
Пошаговое объяснение:
В равностороннем треугольнике все углы равны между собой и равны 60°
Точки пересечения высот и медиан равностороннего треугольника совпадают.
Центры вписанной и описанной окружностей равностороннего треугольника совпадают в точке O
В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной: R=2*r
Отсюда получим:
Периметр: P=3a =3*6= 18 ед.
Площадь: S=(a^2√3)/4= (6^2√3)/4 = 9√3 ≈ 15,6 ед.2
Высота=медиана : h=m=(a√3)/2= (6√3)/2= 3√3≈ 5,2 ед.
Радиус описанной окружности: R=(a√3)/3= (6√3)/3=2√3≈ 3,46 ед.
Радиус вписанной окружности: r=(a√3)/6= (6√3)/6 = √3 ≈ 1,73 ед.
Пошаговое объяснение:
********************************