АВСД - прямоугольник ⇒ ∠А=∠В=∠С=∠Д=90° .
Так как МА⊥ пл. АВСД ⇒ МА ⊥АВ , МА⊥АД , МА⊥АС.
Тогда треугольники АВМ , АДМ, АСМ, АДС, АДВ - прямоугольные , и к ним можно применить теорему Пифагора.
1)\; \; MB=\sqrt{AB^2+AM^2}=\sqrt{3^2+1^2}=\sqrt{10}2)\; \; MD=\sqrt{AD^2+AM^2}=\sqrt{4^2+1^2}=\sqrt{17}3)\; \; AC=\sqrt{AD^2+CD^2}=\sqrt{4^2+3^2}=54)\; \; BD=\sqrt{AD^2+AB^2}=\sqrt{4^2+3^2}=5\; ,\; \; AC=BD\; .
5)\; \; CM=\sqrt{AC^2+AM^2}=\sqrt{5^2+1^2}=\sqrt{26}6)\; \; S(MAC)=\frac{1}{2}\cdot AC\cdot AM=\frac{1}{2}\cdot 5\cdot 1=2,5
Пошаговое объяснение:
АВСД - прямоугольник ⇒ ∠А=∠В=∠С=∠Д=90° .
Так как МА⊥ пл. АВСД ⇒ МА ⊥АВ , МА⊥АД , МА⊥АС.
Тогда треугольники АВМ , АДМ, АСМ, АДС, АДВ - прямоугольные , и к ним можно применить теорему Пифагора.
1)\; \; MB=\sqrt{AB^2+AM^2}=\sqrt{3^2+1^2}=\sqrt{10}2)\; \; MD=\sqrt{AD^2+AM^2}=\sqrt{4^2+1^2}=\sqrt{17}3)\; \; AC=\sqrt{AD^2+CD^2}=\sqrt{4^2+3^2}=54)\; \; BD=\sqrt{AD^2+AB^2}=\sqrt{4^2+3^2}=5\; ,\; \; AC=BD\; .
5)\; \; CM=\sqrt{AC^2+AM^2}=\sqrt{5^2+1^2}=\sqrt{26}6)\; \; S(MAC)=\frac{1}{2}\cdot AC\cdot AM=\frac{1}{2}\cdot 5\cdot 1=2,5
Пошаговое объяснение:
номер 6:
б)19/8 = 2 3/8
в) 21/4 = 5 1/4
г) 11/3 = 3 2/3
номер 7:
а)2 1/4 = 2+ 1/4=8/4 + 1/4=9/4
б)4 1/2= 4+1/2=8/2+1/2=9/2
в)3 4/6=3+4/6=18/6+4/6=22/6
г)2 3/5=2+3/5=10/5+3/5=13/5
/-дробная черта