1)Вычислить угол между прямыми:
3x+2y-7=0
2x-3y+9=0
найдём угловые коэффициенты заданных прямых:
2у = 7 - 3х
3у = 2х + 9
дальше:
у = 7/2 - 3/2 х
у = 3 + 2/3 х
угловые коэффициенты прямых: k1 = -3/2, k2 = 2/3
Прямые перпендикулярны, если их угловые коэффициенты удовлетворяют соотношению k1 = -1/k2.
В нашем случае как раз: -3/2 = - 1/ (2/3)
ответ: Угол между прямыми равен 90 градусам.
2)Составить уравнение прямой, проходящей через точку Mo, перпендикуларно П(над символом проведена черта).
Mo(3;-2); П=(3;-2)
По проекциям вектора П можно вычислить угловой коэффициент прямой, его содержащей: k1 = -2/3. Тогда угловой коэффициент перпендикулярной прямой:
k2 = -1/k1 = 3/2
Ищем прямую у = k2·х + b или у = 3/2·х + b, проходящую через точку Мо. имеющую координаты х = 3, у = -2. подставим эти значения в уравнение прямой и найдём b.
-2 = 3/2·3 + b
b = -2 - 4.5 = -6.5
Итак, искомое уравнение прямой
у = 1,5х - 6,5
Пошаговое объяснение:
Решение.
а) Углы ∠BDC и ∠BAC равны, так как они опираются на одну и ту же дугу BC. Тогда в ΔABE угол ∠ABE = 30° (так как ∠BAC = 60°). Обозначим точку пересечения прямой ME со стороной AB за K. Тогда в прямоугольном треугольнике BKE угол ∠BEK = 60°. Далее, ∠BEK = ∠MED = 60° (как вертикальные). Отсюда получаем, что ΔEDM — равносторонний (так как все углы по 60°), то есть EM = ED = MD ~ x. Так как в прямоугольном треугольнике CED против угла в 30° лежит катет, в 2 раза меньший гипотенузы, то CD = 2x. Получили, что так как DM = x, точка M является серединой гипотенузы CD, то есть EM — медиана ΔCED. Что и требовалось доказать.
ответ: 2¬/15
Пошаговое объяснение:
y = 3x⁴ + 4x³ + 1 ; xЄ [ - 2 ; 1 ] ;
y ' = ( 3x⁴ + 4x³ + 1 ) ' = 12x³ + 12x² + 0 = 12x²( x + 1 ) ;
y ' = 12x²( x + 1 ) ;
y ' = 0 ; 12x²( x + 1 ) = 0 ;
x² = 0 ; або х + 1 = 0 ;
х₁ = 0 ; х₂ = - 1 ;
у( 0 ) = 1 ;
у( - 1 ) = 3* ( - 1 )⁴ + 4*( - 1 )³ + 1 = 0 ;
у( - 2 ) = 3* ( -2 )⁴ + 4* ( -2 )³ + 1 = 48 - 32 + 1 = 17 ;
у( 1 ) = 8 ;
max y(x) = 17 ; min y(x) = 0 .
[-2 ; 1 ] [-2 ; 1 ]