1503,6×(0,63-0,53):(5,502+1.342-0,774-0,07)=1503,6×0,1:6
1503,6×0.1=150,36
150,36:6=25,06
Пусть скорость автобуса x км/ч, тогда скорость грузовой машины (x+17) км/ч. Скорость сближения x+x+17 = 2x+17 км/ч. Встретились через 3 часа, то есть
(2x+17)\cdot3=453\\2x+17=151\\2x=134\\x=67
Скорость автобуса 67 км/ч, грузовой машины 67+17 = 84 км/ч система уравнений:
Пусть скорость автобуса x км/ч, скорость грузовой машины y км/ч.
Скорость грузовой машины на 17 км/ч больше скорости автобуса, т.е. y-x = 17.
Встретились через 3 часа, то есть (x+y)*3 = 453.
Составим и решим систему уравнений
\begin{cases}y-x=17\\(x+y)\cdot3=453\end{cases}\Rightarrow\begin{cases}x=y-17\\(y-17+y)\cdot3=453\end{cases}(y-17+y)\cdot3=453\\2y-17=151\\2y=168\\y=84\\\begin{cases}x=84-17=67\\y=84\end{cases}
Скорость автобуса 67 км/ч, грузовой машины 84 км/ч.
Пошаговое объяснение:
1) f(x)=7x-14, [0;4]
производная равна 7, 7≠0, , поэтому нет критических точек, и наибольшее и наименьшее свое значение функция принимает на концах отрезка.
f(0) = -14-наименьшее значение.
f(4) =14 наибольшее значение функции
2) f(x)= -0,2x + 0,4, [1;3]
аналогично 1) производная -0.2≠0, ищем значения функции на концах отрезка, т.е. f(1) =-0.2+0.4=0.2- наибольшее значение.
f(3) =-0.6+0.4=-0.2-наименьшее значение.
3) f(x)= 6/x, [1;6]
производная равна -6/х²≠0, не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(1) =6/1=6- наибольшее значение.
f(6) =6/6=1- наименьшее значение.
4) f(x)= -5/x, [-5;-1]
Производная равна 5/х²≠0 не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(-1) =-5/(-1)=5- наибольшее значение.
f(-5) =-5/(-5)=1- наименьшее значение.
1503,6 · (0,63 - 0,53) : (5,502 + 1,342 - 0,774 - 0,07) = 25,06
1) 0,63 - 0,53 = 0,1
2) 5,502 + 1,342 = 6,844
3) 6,844 - 0,774 = 6,07
4) 6,07 - 0,07 = 6
5) 1503,6 · 0,1 = 150,36
6) 150,36 : 6 = 25,06
ответ: 25,06.