Областью определения этой функции является множество всех чисел. Нулями функции служат числа -2, 3, 5. Они разбивают область определения функции на промежутки
(
−
∞
;
−
2
)
,
(
−
2
;
3
)
,
(
3
;
5
)
и
(
5
;
+
∞
)
Выясним, каковы знаки этой функции в каждом из указанных промежутков.
Выражение (х + 2)(х - 3)(х - 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:
(
−
∞
;
−
2
)
(
−
2
;
3
)
(
3
;
5
)
(
5
;
+
∞
)
x+2 – + + +
x-3 – – + +
x-5 – – – +
Отсюда ясно, что:
если
x
∈
(
−
∞
;
−
2
)
, то f(x)<0;
если
x
∈
(
−
2
;
3
)
, то f(x)>0;
если
x
∈
(
3
;
5
)
, то f(x)<0;
если
x
∈
(
5
;
+
∞
)
, то f(x)>0.
Мы видим, что в каждом из промежутков
(
−
∞
;
−
2
)
,
(
−
2
;
3
)
,
(
3
;
5
)
,
(
5
;
+
∞
)
функция сохраняет знак, а при переходе через точки -2, 3 и 5 ее знак изменяется.
-2 3 5
Вообще пусть функция задана формулой
f(x) = (x-x1)(x-x2) ... (x-xn),
где x–переменная, а x1, x2, ..., xn – не равные друг другу числа. Числа x1, x2, ..., xn являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.
Это свойство используется для решения неравенств вида
(x-x1)(x-x2) ... (x-xn) > 0,
(x-x1)(x-x2) ... (x-xn) < 0,
где x1, x2, ..., xn — не равные друг другу числа
Рассмотренный решения неравенств называют методом интервалов.
Приведем примеры решения неравенств методом интервалов.
Решить неравенство:
x
(
0
,
5
−
x
)
(
x
+
4
)
<
0
Очевидно, что нулями функции f(x) = x(0,5-x)(x+4) являются точки
x
=
0
,
x
=
1
2
,
x
=
−
4
Наносим на числовую ось нули функции и вычисляем знак на каждом промежутке:
-4 0 0,5
Выбираем те промежутки, на которых функция меньше нуля и записываем ответ.
x
∈
(
−
4
;
0
)
∪
(
0
,
5
;
+
∞
)
или
−
4
<
x
<
0
;
x
>
0
,
5
Решить неравенство:
x
+
2
x
−
1
≤
2
x
+
2
x
−
1
≤
2
⇒
x
+
2
−
2
(
x
−
1
)
x
−
1
≤
0
⇒
−
x
+
4
x
−
1
≤
0
Наносим на числовую ось нули и точки разрыва функции:
1 4
Выбираем те промежутки, на которых функция меньше или равна нулю и записываем ответ.
1.32+27=59км/ч- скорость сближения 354-59*2=236км- будет через 2 часа 354/59= 6ч- через столько встретятся 2. 1)68+16=84(км/ч)-скорость второго автомобиля; 2)84+68=152(км/ч)-скорость первого и второго автомобиля; 3)456/152=3(ч) ответ: они встретятся через 3 часа. 3.1)12+18=30(км/ч)-проехали 2 велосипедиста. 2)30*2=60(км)-расстояние. ответ:через 2 часа расстояние между велосипедистами стало 60 км.
1) 27:3= 9 (км/ч) - скорость сближения 2) 9-4=5 (км/ч) - скорость 2 пешехода
1) 4*3=12 (км пешеход 2) 27-12=15 (км пешеход 3) 15:3= 5 (км/ч) - скорость 2 пешехода удобней, так как он более рациональный 5 задача. если в первый день турист проехал 52% пути, то во второй день:100%-52%=48% 336*100:48=700 км - весь путь 700*52:100=364 км - путь в первый день
f(x) = (х + 2)(х - 3)(х - 5)
Областью определения этой функции является множество всех чисел. Нулями функции служат числа -2, 3, 5. Они разбивают область определения функции на промежутки
(
−
∞
;
−
2
)
,
(
−
2
;
3
)
,
(
3
;
5
)
и
(
5
;
+
∞
)
Выясним, каковы знаки этой функции в каждом из указанных промежутков.
Выражение (х + 2)(х - 3)(х - 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:
(
−
∞
;
−
2
)
(
−
2
;
3
)
(
3
;
5
)
(
5
;
+
∞
)
x+2 – + + +
x-3 – – + +
x-5 – – – +
Отсюда ясно, что:
если
x
∈
(
−
∞
;
−
2
)
, то f(x)<0;
если
x
∈
(
−
2
;
3
)
, то f(x)>0;
если
x
∈
(
3
;
5
)
, то f(x)<0;
если
x
∈
(
5
;
+
∞
)
, то f(x)>0.
Мы видим, что в каждом из промежутков
(
−
∞
;
−
2
)
,
(
−
2
;
3
)
,
(
3
;
5
)
,
(
5
;
+
∞
)
функция сохраняет знак, а при переходе через точки -2, 3 и 5 ее знак изменяется.
-2 3 5
Вообще пусть функция задана формулой
f(x) = (x-x1)(x-x2) ... (x-xn),
где x–переменная, а x1, x2, ..., xn – не равные друг другу числа. Числа x1, x2, ..., xn являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.
Это свойство используется для решения неравенств вида
(x-x1)(x-x2) ... (x-xn) > 0,
(x-x1)(x-x2) ... (x-xn) < 0,
где x1, x2, ..., xn — не равные друг другу числа
Рассмотренный решения неравенств называют методом интервалов.
Приведем примеры решения неравенств методом интервалов.
Решить неравенство:
x
(
0
,
5
−
x
)
(
x
+
4
)
<
0
Очевидно, что нулями функции f(x) = x(0,5-x)(x+4) являются точки
x
=
0
,
x
=
1
2
,
x
=
−
4
Наносим на числовую ось нули функции и вычисляем знак на каждом промежутке:
-4 0 0,5
Выбираем те промежутки, на которых функция меньше нуля и записываем ответ.
x
∈
(
−
4
;
0
)
∪
(
0
,
5
;
+
∞
)
или
−
4
<
x
<
0
;
x
>
0
,
5
Решить неравенство:
x
+
2
x
−
1
≤
2
x
+
2
x
−
1
≤
2
⇒
x
+
2
−
2
(
x
−
1
)
x
−
1
≤
0
⇒
−
x
+
4
x
−
1
≤
0
Наносим на числовую ось нули и точки разрыва функции:
1 4
Выбираем те промежутки, на которых функция меньше или равна нулю и записываем ответ.
x
∈
(
−
∞
;
1
)
∪
[
4
;
+
∞
)
или
x
<
1
;
x
≥
4