По определению производительность труда есть количество времени, затраченное на изготовление единицы продукции.
Имеем функцию U(t), показывающую количество продукции, произведенной от сотворения мира до некоторого момента времени.
За некоторый промежуток времени Dt с момента t1 будет произведено:
S=U(t1+Dt) - U(t1);
Тогда производительность труда на промежутке [t1,t1+Dt]:
П1=Dt/S=Dt/(U(t1+Dt)-U(t1));
Предел П1(Dt,t1) при Dt -> 0 даёт нам производительность труда в момент времени t1.
П=1/(-5*t1^2+40*t1+80)
1) Для получения максимального/минимального значения производительности труда исследуем функцию П (t1) на экстремумы.
Для этого приравниваем первую производную П'(t1) к нулю ("скорость" изменения функции в точке экстремума равна нулю) и решаем полученное уравнение. Исходя из условия задачи берем только те корни, которые удовлетворяют 0<=t<=8 а также моменты времени t1=0 и t1=8.
Подставляем полученные t1 в П (t1) и сравнив значения производительности выбираем максимальное.
2) Первая производная П (t1) дает скорость изменения производительности труда (V(t1)=П'(t1)),
вторая производная (A=V'(t1)=П''(t1)) - темп изменения производительности.
Соответственно скорость и темп изменения производительности через час после начала работы и за час до ее окончания будут:
V(1), A(1) и V(7), A(7);
Верхний график - изменение производительности труда во времени, нижний - U(t)
Пошаговое объяснение:
Пошаговое объяснение:
1) а)15a(a-b)/40b(a-b)=3a/8b
Поскольку в числителе и знаменателе есть одинаковое значение и оно находится под знаком умножения (в нашем случае а-б) мы можем его взаимно сократить. числа 15 и 40 делятся на 5, поэтому мы сократили их на это число и получили 3/8
б)у^2+у/у=у(у+1)/у=у+1
Тут все проще, в числителе выносим у за скобки и получаем выражение у(у+1), а далее просто сокращаем игрики, получая ответ.
2)
а)(12х-7/15х)+(3х-2/15х)=15х-9/15х=3(5х-3)/15х=5х-3/5х
б)(ах+ау/ху^2)*((х^2)у/3х+3у)=ау(х^3)+а(х^2)(у^2)/3(х^2)(у^2)+3х(у^3)=(ау(х^2))(х+у)/(3х(у^2))(х+у)=ау(х^2)/3х(у^2)
3)(у^2-6у+9/у^2-9)/(10у-30/у^2+3у)=((у-3)^2/(у-3)(у+3))/(10(у-3)/у(у+3))=(у-3/у+3)/(10(у-3)/у(у+3))=((у-3)(у^2+3))/(у+3)(10у-30)=(67*493)/(73*670)
V1=abc=2*2*1=4 (см куб)
Куб имеет объём, вдвое больший объёма прямоугольного параллелепипеда
V2=2*V1=4*2=8 (см куб)
т.к. у куба все ребра равны, то его ребра = по 2 см
сумма длин всех рёбер куба объемом
2+2+2=6 (см)