Пошаговое объяснение:
Число делится на 15, если оно одновременно делится на 3 и 5.
Число делится на 3, если сумма его цифр делится на 3.
Число делится на 5, если оно оканчивается цифрой 0 или 5.
Итак, наименьшее натуральное число, которое делится на 3 и 5 одновременно это 15.
Получаем:
Второе натуральное число: 15+15=30
Третье натуральное число: 30+15=45
Четвёртое натуральное число: 45+15=60
Пятое натуральное число: 60+15=75
Ищем число, которое делится на 15 и стоит на 40-ом месте:
15*40=600 - число, которое делится на 15 и стоит на 40-ом месте.
5^2+12^2=13^2. Домножим и поделим выражение на 13, получим
13*(5/13*cos(3x)+12/13*sin(3x)). Поскольку (5/13)^2+(12/13)^2=1. Значит существует угол а, для которого sin(a)=5/13, cos(a)=12/13. Тогда
13*(5/13*cos(3x)+12/13*sin(3x))=13*(sin(a)*cos(3x)+cos(a)*sin(3x))=13*sin(3x+a).
Область определения sin(3x+a) - отрезок [-1,1], значит область определения искомой функции [-13,13].
Пошаговое объяснение:
давай дружить