М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mar244144
mar244144
25.09.2022 13:04 •  Математика

Самостоятельная работа по теме «Производные»
Найдитс производную функции
Вариант 17.
1) y=x2-7x;
2) y =12x+vx;
3) y = - +4x;
4) y sinx+3;
5) y-x +9x20+1
6) y (x2-1)(x+2);
7) y = vx (2x-4);
8) y-x cosx;
9) y = (-+1) (2x-3);
10) y 2x+4 11) v= 3x+1 sin x 12) y=

👇
Ответ:
Max70777
Max70777
25.09.2022
Добрый день! Я рад выступить в роли вашего школьного учителя и помочь вам разобраться с задачами на производные. Давайте решим каждую задачу по порядку.

1) Найдем производную функции y = x^2 - 7x.

Для нахождения производной данной функции, мы должны применить правило производной для суммы и правило производной для произведения.

Правило производной для суммы: (f(x) + g(x))' = f'(x) + g'(x).
Правило производной для произведения: (f(x)g(x))' = f'(x)g(x) + f(x)g'(x).

Теперь найдем производную y = x^2 - 7x пошагово:

- Применяем правило производной для произведения:
У нас есть f(x) = x^2 и g(x) = -7x.
f'(x) = 2x (производная x^2 по правилу степенной функции).
g'(x) = -7 (производная -7x по правилу произведения).

- Теперь применяем правило производной для суммы:
(y = x^2 - 7x)' = (x^2)' + (-7x)' = 2x - 7.

Ответ: y' = 2x - 7.

2) Найдем производную функции y = 12x + vx.

Здесь у нас есть переменная v, для которой не дано значение. Поэтому мы не можем точно найти производную функции y = 12x + vx без конкретного значения v. Если у вас есть какая-то информация о v, пожалуйста, укажите ее, и я смогу помочь с решением.

3) Найдем производную функции y = - + 4x.

Здесь также непонятно, что означает символ "-". Если вы имели в виду отрицательное число, то можем решить задачу. Производная функции y = -4x + 4x = 0.

Ответ: y' = 0.

4) Найдем производную функции y = sinx + 3.

Для нахождения производной функции, мы должны применить правило производной для синуса и правило производной для константы.

Правило производной для синуса: (sinx)' = cosx.
Правило производной для константы: (c)' = 0 (где c - константа).

Теперь найдем производную y = sinx + 3 пошагово:

- Применяем правило производной для синуса:
(sin(x) + 3)' = (sin(x))' + (3)' = cos(x) + 0 = cos(x).

Ответ: y' = cos(x).

Продолжение в следующем сообщении.
4,4(36 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ