Пояснение:
Модуль - расстояние на координатной прямой от точки до некой другой точки. Модуль числа обозначается с двух сторон вертикальными линиями (|x|).
Модуль всегда равняется положительному числу, (то есть не может равняться отрицательному числу! т.к. по это расстояние, а расстояние не может быть отрицательным), т. е. модуль положительного числа равен положительному числу, модуль отрицательного числа также равен положительному числу.
Например, |123| = 123; |- 645| = 645; и т. д.
Из этого и будем отходить при решении.
|8x - 6| = 14;
1. 8x - 6 = 14;
8x = 14 + 6;
8x = 20;
x = 20 ÷ 8;
x₁ = 2,5.
2. 8x - 6 = - 14;
8x = - 14 + 6;
8x = - 8;
x = - 8 ÷ 8;
x₂ = - 1.
ответ: (-1; 2,5).
Удачи Вам! :)
Дана функция у = 2х² - х⁴.
1.Область определения функции: x ∈ R, или -∞ < x < ∞.
2. Нули функции. Точки пересечения графика функции с осью ОХ.
2х² - х⁴ = 0, х²(2 - х²) = 0. Тогда х² = 0 и (или) 2 - х² = 0.
x₁ = 0.
x₂ = √2.
х₃ = -√2.
Точки пересечения графика функции с осью ОУ при х = 0 ⇒ у = 0.
3. Промежутки знакопостоянства функции.
Для нахождения промежутков знакопостоянства функции y=f(x) надо решить неравенства f(x)>0, f(x)<0.
По пункту 2 имеем 4 промежутка значений аргумента, в которых функция сохраняет знак:
(−∞;−√2), (−√2;0), (0;√2), (√2;+∞).
Для того, чтобы определить знак функции на каждом из этих промежутков, надо найти значение функции в произвольной точке из каждого промежутка. Точки выбираются из соображений удобства вычислений.
x = -2 -1 1 2
y = -8 1 1 -8.
В промежутках (−∞;−√2) и (√2;+∞) функция принимает отрицательные значения, в промежутках (−√2;0) и (0;√2) функция принимает положительные значения.
4. Симметрия графика (чётность или нечётность функции).
Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
- x^{4} + 2 x^{2} = - x^{4} + 2 x^{2}
- Да
- x^{4} + 2 x^{2} = - -1 x^{4} - 2 x^{2}
- Нет
Значит, функция является чётной.
5. Периодичность графика - нет.
6.Точки разрыва, поведение функции в окрестностях точек разрыва, вертикальные асимптоты - нет.
7. Интервалы монотонности функции, точки экстремумов, значения функции в точках экстремумов.
Находим производную заданной функции:
y' = 4x - 4x³.
Приравниваем производную нулю: 4x - 4x³ = 4x(1 - x²) = 0,
4x = 0, x = 0.
x² = 1, х = 1, x = -1.
Критических точек три: х = 0, х = 1, x = -1.
Находим значения производной левее и правее от критических.
x = -2 -1 -0.5 0 0.5 1 2
y' = 24 0 -1.5 0 1.5 0 -24.
Где производная положительна - функция возрастает, где отрицательна - там убывает.
Убывает на промежутках (-oo, -1] U [0, oo).
Возрастает на промежутках (-oo, 0] U [1, oo).
8. Интервалы выпуклости, точки перегиба.
Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0.
Вторая производная 4 \left(- 3 x^{2} + 1\right) = 0.
Решаем это уравнение.
Корни этого уравнения:
x_{1} = - \frac{\sqrt{3}}{3}
x_{2} = \frac{\sqrt{3}}{3}
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках [-sqrt(3)/3, sqrt(3)/3].
Выпуклая на промежутках (-oo, -sqrt(3)/3] U [sqrt(3)/3, oo).
9. Поведение функции в бесконечности. Наклонные (в частности, горизонтальные) асимптоты - нет.
10. Дополнительные точки, позволяющие более точно построить график.
11. Построение графика функции - дан в приложении.
Если есть модуль, то мы можем получить 2 уравнения
8x - 6 = 14
и
8х -6 = -14
решим оба уравнения:
1)8х = 14+6
8х = 20
х1 = 20/8=2,5
2) 8х = -14+6
8х = -8
х2 = -1