По значению тангенса можно найти значение косинуса. Их связывает одно очень важное соотношение:
1 + tg²t = 1 / cos²t
Отсюда выразим квадрат косинуса:
cos²t = 1 / (1 + tg²t)
Теперь подставим значения в данное выражение и найдём квадрат косинуса:
cos²t = 1 / (1 + 49/576) = 1 : 625/576 = 576/625
Следовательно, по квадратному уравнению получаем два возможных значения косинуса:
сos t = 24/25 или cos t = -24/25
Какой косинус выбрать - положительный или отрицательный? По условию значение угла лежит в промежутке от π до 3π/2. Поэтому, угол лежит в 3 четверти, где косинус как мы знаем отрицательный. Поэтому, cos t = -24/25.
Теперь элементарно вычислить например котангенс угла. Получаем по соотношению между тангенсом и котангенсом:
ctg α = 1 / tg α = 1 : 7/24 = 24/7
Синус угла легко найти, зная косинус и например тангенс(всё это мы знаем).
tg α = sin α / cos α
Отсюда
sin α = tg α * cos α = 7/24 * (-24/25) = -7/25
Задача решена.
Пошаговое объяснение:
В основном используется табличный интеграл от степенной функции, да ещё от синуса.
\int\limits {x^n} \, dx = \frac{1}{n+1} x^{n+1} +C \\ \\ \int\limits {sinx} \, dx = -cosx + C
1а. f(x)=2-x
\int\limits {(2-x)} \, dx = 2* \frac{1}{0+1} x^{0+1} - \frac{1}{1+1}x^{1+1} + C = 2x - \frac{1}{2} x^2 +C
2б. f(x)=x^4 - sin x
\int\limits {(x^4 - sin x)} \, dx = \frac{1}{4+1}x^{4+1} -(-cosx) +C = \frac{1}{5} x^5+ cosx +C
2в. f(x)= 2/ x^3
\int\limits { \frac{2}{x^3} } \, dx = \int\limits { 2x^{-3} \, dx = 2* \frac{1}{-3+1} x^{-3+1} + C = -x^{-2} + C = - \frac{1}{x^2} + C
1)(x-1,5=4), x=4-1,5=3,5 2)