Вот они: 1 группа Рассмотрим отличающиеся только на 1 Все рядом расположенные числа:(50 и 51, 51 и 52, 52 и 53, ..., 148 и 149, 149 и 150) их 100 штук(пар)
2 группа Рассмотрим отличающиеся на 2 Их, будет меньше вдвое, так как нечетные входят Например, 50 и 52, 52 и 54, 54 и 56(и далее, последние: 146 и 148, 148 и 150) - не входят, так как всегда имеется общий делитель, равный 2, 51 и 53, 53 и 55, 55 и 57(и далее, последние: 145 и 147, 147 и 149) - входят, так как у них нету и не может быть общего делителя. их 100/4= 25 штук(пар)
Рассмотрим отличающиеся на 3 Можно показать, что они встречаются сколько раз наглядным примером: 50 и 53 52 и 55 53 и 56 55 и 58 56 и 59 далее последние: 145 и 148 146 и 149
То есть, всего пар отличающихся на 3 равно 100 пар, у которых общий делитель будет равен 3 равно 100/3=33(с лишним) То есть таких взаимно простых пар будет 100-33=67 штук(пар)
cos^2 x + sin 2x = 0;
cos^2 x + 2 sin x * cos x = 0;
Вынесем общий множитель за скобки:
cos x(cos x +2 sin x) = 0;
Уравнение имеет два решения:
cos x = 0 и cos x +2 sin x = 0;
Решив первое уравнение получим:
x = 3п/2 + 2п*n, где п - число Пи, равное 3.14;
Решим второе уравнение:
cos x + 2 sin x = 0;
cosx = - 2 sinx;
ctg x = - 2;
x= arc ctg (-2) + п * n;
ответ: x = 3п/2 + 2п*n; x = arc ctg (-2) + п * n;