S = a•c S = b•d Отсюда для вычисления в таблице: a•c = b•d
В таблице столбик а): а = 4 см b = 2 см c = 1 см d = 2 см (так как a•c = b•d, значит, d = a•c/b) S = 4 кв.см (так как S = a•c или S = b•d)
В таблице столбик б): а = 6 дм (так как a•c = b•d, значит, а = b•d/c) b = 1 дм c = 0,5 дм d = 3 дм S = 3 кв.дм (так как S = a•c или S = b•d)
В таблице столбик в): а = 30 м (так как S = a•c, значит, а = S:с) b = 4 м (так как S = b•d, значит, b = S:d) c = 2 м d = 15м S = 60 кв.м
В таблице столбик г): а = 15 см b = 1 дм c = 50/15 = 10/3 = 3 1/3 см (так как S = a•c, значит, с = S:а) d =50/10 = 5 см (1 дм = 10 см и так как S = b•d, значит, d = S:b) S = 50 кв.см
Опять не подходит. Итак мы доказали, что среди всех нечетных чисел начинающихся от 5 и далее, не будет такой тройки чисел. Можно было бы сказать что таких чисел больше нет. Но если вы внимательно это прочитали, то наверняка заметили бы, что я не рассмотрел в качестве х, число равно 1. Итак Х1=1, Х2=3 и Х3=5 Все числа простые и отличаются на 2, как и требовалось по условию. И данная тройка единственная за исключением, тройки чисел приведенной в условии задачи. Единственность мы доказали выше. ответ 1, 3, 5
43 дм
Пошаговое объяснение:
30/20=1.5 дм
P = 2 × (a + b)
(1,5+20)*2=43 дм