М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
123890Cookie123890
123890Cookie123890
12.01.2022 21:20 •  Математика

Сколько можно разложить три письма в три конверта

👇
Ответ:
shvffvvfff
shvffvvfff
12.01.2022

"Хорошая задача по терверу должна иметь множественное толкование в зависимости от настроения принимающего и личности отвечающего" (с)

Конверты могут быть одинаковыми и разными.  Письма могут быть одинаковыми или разными.  В каждом конверте может оказаться только по одному или по множеству писем.

Итого имеем 2*2*2 = 8 возможных толкований этой задачи.  Первая подзадача по определению количества толкований решена ))

Начнем со случаев когда в каждом конверте должно оказаться только по одному письму.

В случае когда и конверты и письма одинаковы - 1 возможный вариант.  По одному одинаковому письму в одинаковых конвертах.

Когда конверты разные , а письма одинаковые , и наоборот  конверты одинаковые , а письма разные - также один возможный вариант. Случаи одного разного письма в одинаковых конвертах и одинакового письма в разных конвертах неотличимы.

Случай разных писем в разных конвертах - классическая задача на перестановки

ответ

Р(3) = 3! = 6 возможных вариантов.

Теперь разберемся со случаями  когда в одном конверте может быть несколько писем.

При одинаковых письмах в одинаковых конвертах

1 - 1 - 1

2 - 1 - 0

3 - 0 - 0

три возможных варианта.

Случай разных писем в одинаковых конвертах.

1 - 1 - 1

0 - 1 - 2   3 варианта в зависимости от того какое письмо одно.

0 - 0 -3

Всего 5 вариантов.  

Случай одинаковых писем в разных конвертах.

1 - 1 - 1

0 - 1 - 2

0 - 2 - 1

1 - 0 - 2

1 - 2 - 0

2 - 0 - 1

2 - 1 - 0

0 - 0 - 3

0 - 3 - 0

3 - 0 - 0

десять возможных вариантов.

Ну и наконец случай разных конвертов и разных писем даёт нам

1 - 1 - 1  - 6 вариантов

0 - 1 - 2  - 3 варианта

0 - 2 - 1  - 3 варианта

1 - 0 - 2  - 3 варианта

1 - 2 - 0  - 3 варианта

2 - 0 - 1  - 3 варианта

2 - 1 - 0  - 3 варианта

0 - 0 - 3  - 1вариант

0 - 3 - 0  - 1вариант

3 - 0 - 0  - 1вариант

Итого   - можно и сразу , но расписано для понимания  3^3 = 27 вариантов.

Полный ответ на такую на первый взгляд простую задачу должен включать все возможные варианты, а то вдруг у Вас на экзамене по терверу  такой вот преподаватель попадется )))

P.S.   Когда уже решение было опубликовано - пришло мне замечание от благодарных студентов ( ну или от их приунывших преподавателей ).  

- Один ты что ли такой вредный?  

- А где варианты с двумя одинаковыми конвертами и письмами и одним разным?  

Приходится исправляться !  

Когда по одному письму в конверте.  

Случай (2 одинаковых конверта, одно отличное ) и ( 2 одинаковых письма одно отличное)  

K1 K1 K2

П1 П1 П2

П2 П1 П1

2 варианта  

Случай (2 одинаковых конверта, одно отличное ) и ( 3 различных письма)

K1 K1 K2

П1 П2 П3

П1 П3 П2

П3 П2 П1

3 варианта

Случай (3 различных конверта ) и ( 2 одинаковых письма одно отличное)

K1 K2 K3

П1 П1 П2

П2 П1 П1

П1 П2 П1

3 варианта  

Когда по множеству писем в конверте.  

Случай  писем (2+1)  в одинаковых конвертах.  

П1-П1-П2  

П1П1-П2-0

П1П2-П1-0  

П1П1П3-0-0

Всего 4 варианта.  

Случай одинаковых писем в (2+1) конвертах.  

K1 K1 K2

1 - 1 - 1  

0 - 1 - 2  

0 - 2 - 1  

1 - 2 - 0  

0 - 0 - 3  

3 - 0 - 0  

шесть возможных вариантов.

Случай (2+1) писем  в (2+1) конвертах  

K1 K1 K2  

П1-П1-П2

П1-П2-П1

0-П1-П1П2

0-П2-П1П1

0-П1П1-П2

0-П1П2-П1    

П1-П1П2-0

П2-П1П1-0

0-0-П1П1П2

П1П1П2-0-0  

Десять возможных вариантов.  

Случай разных писем в (2+1) конвертах

K1 K1 K2

П1-П2-П3

П1-П3-П2

П2-П3-П1

0-П1-П2П3

0-П2-П1П3

0-П3-П1П2  

0-П1П2-П3

0-П1П3-П2

0-П2П3-П1

П1-П2П3-0

П2-П1П3-0

П3-П1П2-0

0-0-П1П2П3

П1П2П3-0-0

14 вариантов

Случай (2+1) писем в разных конвертах

К1  К2  К3

П1-П1-П2

П2-П1-П1

П1-П2-П1

0 -П1-П1П2

0-П2-П1П1

0-П1П1-П2

0-П1П2-П1

П1-0-П1П2

П2-0-П1П1

П1-П12-0

П2-П1П1-0

П1П1-0-П2

П1П2-0-П1

П1П1-П2-0

П1П2-П1-0

П1П1П2-0-0

0-П1П1П2-0

0-0-П1П1П2

18 вариантов.

Уф Вот такая вот непростая задача получилась ))

4,8(2 оценок)
Ответ:
elena1234569
elena1234569
12.01.2022

Пошаговое объяснение:

Всего существует .

Это - размещения

n = 3

m = 3

Число размещений:

A_n^m=\frac{n!}{(n-m)!}

A_3^3=\frac{3!}{(3-3)!}=\frac{3!}{0!}= \frac{1*2*3}{1}=6\\

Поскольку по определению факториала:

0! = 1

Размещаем:

1 - 2 - 3

1 - 3 -2

2 - 1 - 3

2 - 3 - 1

3 - 1 - 2

3 - 2 - 1

4,4(58 оценок)
Открыть все ответы
Ответ:
adamoon44
adamoon44
12.01.2022
Вот правило: 1)при переводе дес. дроби в правельную двигаешь запятую вправо. Сколько раз сдвинула стока нулей будет в знаменателе. Пример: 0,08 - двигаем два раза, значит в знаменателе бут сто. 0,08=8/100. Она сокращается на 2 а потом еще на два. 8/100=4/50=1/25.
2)При переводе десятич. в смешаную надо сначала поделить, все что целое пишется перед дробью, остальное нужно умножать на 10или100итд.
Пример:4,004=4(целых), переводим запятую вправо три раза, значит в знаменателе будет 1000. 4(целых)4/1000. Сокращается на два а потом на два= 4(целых)1/250.
3)При переводе правильной дроби в десятичную теже правила как при делении в столбик.
Пример: 3(целых)1/20- целая часть так и остается, после нее ставится запятая, потом делится дробная часть. Число в числителе должно быть больше знаменателя, для этого нужно умножить 1 на 10или100или1000итд. У нас это 100. У числа 100 два нуля значит после запятой ставим два нуля. 100/20=5.
3(целых)1/20=3,005
4,4(24 оценок)
Ответ:
Залму111
Залму111
12.01.2022
Вот правило: 1)при переводе дес. дроби в правельную двигаешь запятую вправо. Сколько раз сдвинула стока нулей будет в знаменателе. Пример: 0,08 - двигаем два раза, значит в знаменателе бут сто. 0,08=8/100. Она сокращается на 2 а потом еще на два. 8/100=4/50=1/25.
2)При переводе десятич. в смешаную надо сначала поделить, все что целое пишется перед дробью, остальное нужно умножать на 10или100итд.
Пример:4,004=4(целых), переводим запятую вправо три раза, значит в знаменателе будет 1000. 4(целых)4/1000. Сокращается на два а потом на два= 4(целых)1/250.
3)При переводе правильной дроби в десятичную теже правила как при делении в столбик.
Пример: 3(целых)1/20- целая часть так и остается, после нее ставится запятая, потом делится дробная часть. Число в числителе должно быть больше знаменателя, для этого нужно умножить 1 на 10или100или1000итд. У нас это 100. У числа 100 два нуля значит после запятой ставим два нуля. 100/20=5.
3(целых)1/20=3,005
4,5(37 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ