33/65
Пошаговое объяснение:
так как sin(a+b)=sin(a)*cos(b)+sin(b)*cos(a),
то sin(a+b)=
так как:
1) sin (a) = 3/5 (по условию)
2) cos(b) = -5/13 (по условию)
отметим, что так как а принадлежит 2-ой координатной четверти на графике, то sin(a)>0, cos(a)<0, но b принадлежит 3-ей координатной четверти, поэтому sin(b)<0, cos(b)<0
при этом sin(х) ^2 + cos (х) ^2=1
поэтому:
3) sin(b) ^2 + (-5/13)^2=1
sin(b) ^2+25/169 = 1
sin(b) ^2 = 1 - 25/169
sin(b) ^2 = 144/169 = (12/13)=(-12/13), при этом sin(b)<0
следовательно sin(b) = -12/13
4) cos(a) ^2 + (3/5)^2 = 1
cos(a) ^2 + 9/25 =1
cos(a) ^2 = 1 - 9/25
cos(a) ^2 = 16/25 = (4/5)^2 = (-4/5)^2, при этом cos(a)<0
следовательно cos(a) = -4/5
5) sin(a)*cos(b)+sin(b)*cos(a) =
= (3/5) * (-5/13) + (-12/13) * (-4/5) = -15/65 + 48/65 = (48-15)/65 = 33/65
8, 9, 10, 11
Пошаговое объяснение:
Среди простых сомножителей обязательно есть 5 (иначе n < 5 и в произведение не войдёт ни одного простого числа), так что произведение точно оканчивается на 5, а сумма остальных цифр равна 3. Поэтому все возможные произведения должны иметь вид (многоточия скрывают любое количество нулей — в том числе и их отсутствие):
3...52...1...51...2...51...1...1...5Если n < 12, то все возможные произведения это 5 = 5 (не подходит), 5 · 7 = 35 (подходит, 8 ≤ n ≤ 11).
Докажем, что при n ≥ 12 решений задачи нет. Если n > 11, то в произведение входит 11, тогда оно делится на 11. Признак делимости на 11:
Число делится на 11, если разность между суммами цифр, стоящих на четных и нечетных местах, делится на 11.
Эта разность может быть равна (плюсы и минусы выбираются в каждом случае независимо):
±3 ± 5 ±2 ± 1 ± 5±1 ± 2 ± 5±1 ± 1 ± 1 ± 5Легко видеть, что все разности по модулю не превосходят 8, так что если они и делятся на 11, то обязательно равны 0. Но, как можно заметить, они нулю равны быть не могут: если в одну из сумм входит 5, то другая должна быть не меньше 5, а она не больше 3.