а)Перепишем так
9^x*(2/3)=2^(2x+3,5)
9^x=3*2^(2x+2,5)
3^(2x-1)=2^(2x-1+3,5)
(3/2)^(2x-1)=8*sqrt(2)
2x-1=log(3/2) (2^3,5)
2x-1=3,5*log(3/2)(2)
x=0,5+1,75**log(3/2)(2)
Можно написать поизящней, но логарифм останется.
б)
3^x=a 2^x=b
9*a^2-30ab+8*b^2=0
9*a^2-30ab+25*b^2=17b^2
(3a-5b)^2=17b^2
1) 3a-5b=sqrt(17)b
3(a/b)=5+sqrt(17)
(a/b)=(5/3)+sqrt(17)/3
(1,5)^x=(5/3)+sqrt(17)/3
x1=log(1,5)((5/3)+sqrt(17)/3)
2) 3a-5b=-sqrt(17)b
(a/b)=(5/3)-sqrt(17)/3
x2=log(1,5)((5/3)-sqrt(17)/3)
Оба решения годятся, т.к 5 больше корня из 17
Решения не красивые, но, кажется, такие числа.
а) 8 9 5 2 6 3 1 0 одна из таких последовательностей
2) Пусть с какого-то момента последовательность имее вид а б с а б с
Рассмотрим число а+б+с:
последняя его цифра а. Это значит, что оно имеет вид 10д+а
а+б+с=10д+а, откуда с+б=10д, то есть с+б делится на 10. Аналогично доказывается, что а+с и а+б делится на 10
Отнимем числа а+с и а+б: так как они делятся на 10, то их разница тоже делится на 10. а+с-а-б=с-б
Добавим к этому числу б+с, их сумма тоже делится на 10: б+с+с-б=2с
Откуда с делится на 5. Так как с - цифра, то с равно 0 или 5. Аналогично доказывается, что а и б равны 0 или 5. Значит возможны периодические варианты, состоящие только из цифр 0 и 5. Значит такая последовательность не может состоять из ТРЕХ попарно различно цифр, повторяющихся периодически.
ответ: не может.
4*4=16 5*5=25
5*4=20 6*5=30
6*4=24 7*5=35
7*4=28 8*5=40
8*4=32 9*5=45
9*4=36