1 к 28
Пошаговое объяснение:
Нужно найти, сколько существует достать 3 черных шара из общего количества. После, найти количество достать 3 любых шара в принципе и разделить первое на второе.
Находим первое с формулы и комбинаторики С:
С = 6! / (3! * (6 - 3)!) = (3! * 4 * 5 * 6) / (1 * 2 * 3 * 3!) = 4 * 5 = 20 (вариантов, как достать 3 черных шара).
Теперь находим количество возможностей достать три шара:
С = 16! / (3! * (16 - 3)!) = (13! * 14 * 15 * 16) / (1 * 2 * 3 * 13!) = 35 * 16 = 560 (вариаций достать три шара).
Вероятность достать три черных шара из общего количества:
20/560 = 2/56 = 1/28.
ответ: 1/28.
Как говорится "нетрудно показать, что" при этом условии в основание пирамиды (трапецию) можно вписать окружность и следовательно можно найти длины боковых сторон трапеции: (4+16)/2 = 10 см
Диаметр вписанной окружности можно найти как катет прямоугольного треугольника с гипотенузой 10 (боковая сторона трапеции) и катетом равным половине разности оснований: (16-4)/2 = 6 см
D = корень(10*10-6*6) = 8 см
То есть высоты боковых граней будут равны (D/2)/sin(30) = (8/2)/0.5 = 8 см
Теперь дело за площадью которая равна половине произведения найденной высоты (она одинакова у всех четырех боковых граней) на сумму сторон основания Sб = 0.5*8*(4+16+10+10) = 60 см2
9/18 / -2/3
2
-1/2