М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ilshat22
ilshat22
30.11.2021 09:50 •  Математика

Велосипедист проїхав відстань між двома селами зі швидкістю 15 км/год.дорогу назад він подолав зі швидкістю 10 км/год.скільки всього часу знадобилося велосипедисту,якщо відстань між селами становить 3о км?

👇
Ответ:
LIZA31012006
LIZA31012006
30.11.2021
1)30:15=2(год.)-проїхав він туди 
2)30:10=3(год.)-їхав назад
3)3+2=5(год.)
ответ: знадобилось 5 годин 
4,8(2 оценок)
Открыть все ответы
Ответ:
olmilevskaya1
olmilevskaya1
30.11.2021

Находим частные производные:

z=2x^3+2y^3-36xy+430 \\ \\ z'_x=6x^2-36y \\ z'_y=6y^2-36x

Приравниваем их к нулю и решаем систему:

\left\{\begin{matrix} 6x^2-36y=0\ \ |:6 \\ 6y^2-36x=0 \ \ |:6 \end{matrix}\right. \\ \\ \left\{\begin{matrix} x^2-6y=0\ \ \\ y^2-6x=0 \ \ \end{matrix}\right.\\ \\ \left\{\begin{matrix} y=\frac{x^2}{6} \ \\ y^2-6x=0 \ \ \end{matrix}\right. \\ \\ \\ (\frac{x^2}{6})^2-6x=0\\ \\ \frac{x^4}{36} -6x=0 \ \ |*36 \\ \\ x^4-216x=0 \\ \\ x(x^3-216)=0 \\ \\

\begin{bmatrix} x_1=0\\ x_2^3-216=0 \end{matrix} \ \ \Leftrightarrow \ \ \begin{bmatrix} x_1=0\\ x_2^3=216 \end{matrix} \ \Leftrightarrow \ \ \begin{bmatrix} x_1=0\\ x_2=6\end{matrix} \\ \\ y=\frac{x^2}{6}\\ \\ \begin{bmatrix} y_1=\frac{0^2}{6} \\ \\ y_2= \frac{6^2}{6} \end{matrix} \ \ \Leftrightarrow \begin{bmatrix}y_1=0\\ y_2=6 \end{matrix}

Получаем две ВОЗМОЖНЫЕ (критические или стационарные) точки экстремума: M₁(x₁;y₁) и М₂(х₂;у₂)

в данном случае: M₁(0;0) и M₂(6;6)

1) Проверим точку M₁

для этого находим вторые частные производные функции и подставляем координаты нашей точки:

A=z''_{xx}=12x; \ \ z''_{xx}(0;0)=0 \\ \\ B=z''_{xy}=z''_{yx}=-36; \\ \\ C=z''_{yy}=12y; \ z''_{yy}(0;0)=0

AC-B²=0*0-(-36)²=-36<0 - следовательно экстремума в точке М₁ нет

2) Проверим точку М₂

A=z''_{xx}=12x; \ \ z''_{xx}(6;6)=72 \\ \\ B=z''_{xy}=z''_{yx}=-36; \\ \\ C=z''_{yy}=12y; \ z''_{yy}(6;6)=72

AC-B²=72*72-(-36)²=3888>0 экстремум есть, причем минимум (так как A>0)

Итак, точка минимума М₂(6;6)

Минимум:

z(M_2)=2*6^3+2*6^3-36*6*6+430=-2

ответ: z=-2 - минимум функции


P.S.

Если AC-B²> 0 и A > 0, то М - точка минимума

Если AC-B²> 0 и A < 0, то М - точка максимума

Если AC-B²< 0, то экстремумов нет

4,5(72 оценок)
Ответ:
Jane110509
Jane110509
30.11.2021

Оценка:

Докажем, что оставшееся на доске число будет нечётным. Посмотрим, как изменяется сумма всех чисел от производимой операции. Пусть сумма чисел до операции равна S, а операция проводится над числами a и b и a ≥ b. Тогда S' = S - a + (a - b) - b = S - 2b. Так как операции нахождения разности проводились над целыми числами, результат будет целым, значит, 2b - чётное число. Изначально сумма всех чисел была равна 2015 * 1007 (нечётное число), значит, после каждой операции она будет оставаться нечётной, откуда последнее оставшееся число будет нечётным. Так как a ≥ b, и a и b - неотрицательные числа, то их разность тоже будет неотрицательна. Значит, число, оставшееся на доске, не будет больше самого большого из изначальных чисел. Тогда наибольшее число, которое могло остаться на доске, равно 2013.

Пример:

Рассмотрим числа k, k+1, k+2, k+3 и k+4. Сперва проведём операцию над числами k+3 и k+4 (получим 1), потом над 1 и k+2 (получим k+1), затем над k+1 и k+1 (получим 0), и, наконец, над k и 0 (получим k). Таким образом мы убираем 4 подряд стоящих числа. Уберём 2012 чисел от 2 до 2013 включительно. Теперь проведём операцию над числами 1 и 2014, получим 2013.

ответ: 2013.

4,5(20 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ