Сначала приведем функцию в более простую форму. y = 1/2*(|x/(3/2) - (3/2)/x| + x/(3/2) + (3/2)/x) = 1/2*(|2x/3 - 3/(2x)| + 2x/3 + 3/(2x)) y = |x/3 - 3/(4x)| + x/3 + 3/(4x)
1) Пусть x/3 - 3/(4x) < 0, то есть (4x^2 - 9)/(12x) < 0 (2x + 3)(2x - 3)/(12x) < 0 x ∈ (-oo; -3/2) U (0; 3/2)
Тогда |x/3 - 3/(4x)| = 3/(4x) - x/3 y = 3/(4x) - x/3 + x/3 + 3/(4x) = 3/(4x) + 3/(4x) = 3/(2x) y(-3/2) = 3/2 : (-3/2) = -1 - это точка минимума
2) Пусть x/3 - 3/(4x) >= 0, то есть Точно также получаем x ∈ [-3/2; 0) U [3/2; +oo)
Тогда |x/3 - 3/(4x)| = x/3 - 3/(4x) y = x/3 - 3/(4x) + x/3 + 3/(4x) = 2x/3 y(3/2) = 2/3*3/2 = 1 - это тоже точка минимума. В этих двух точках и будет одно пересечение с прямой y = m Вот на рисунке примерный график этой функции.
1) 1-вариант, если выражение имеет такой вид: (17/8х)=-1-(3/4) (17/8х)=-(1×4+3)/4 (17/8х)=-(7/4) 56х=-68|÷56 х=-(68/56) х=-1(12/56)=-1(3/16)~-1,214286 2-вариант, если выражение имеет такой вид: (17/8)х=-1-(3/4) (17/8)х=-(7/4)|÷(17/8) х=-(7×4×2)/(4×17) х=-(14/17)~-0,82353