Требуется найти степень десятки, на которую делится нацело данное произведение. Каждый множитель входящий в данное произведение (ну единицу можно не считать), можно разложить в произведение простых множителей. Затем подсчитать общее количество простого множителя = 5, (степень пятерки). Ведь 10=5*2. Двойки тоже можно подсчитать таким же образом, но их очевидно намного больше. Поэтому искомая степень десяти равно степени пятерки. Теперь считаем, для начала выпишем все целые числа от 1 до 30, делящиеся на 5: 5; 10; 15; 20; 25; 30. Степень пятерки, на которую делятся эти числа могут быть не только единичной. Выпишем для каждого приведенного числа степень пятерки, на которую оно делится. Для 5, будет 5 в первой степени. Для 10, будет 5 в первой степени. -- 15 -- 5-- ---20 -- 5--- ---25 --- 5 во второй степени (т.е. 5^2). ---30 -- 5 в первой степени. Теперь сосчитаем все эти пятерки: 1+1+1+1+2+1 = 7. Т.о. данное в условие произведение делится на 5^7 (и не делится на большую степень пятерки). Степень же двойки будет намного больше (числа делящиеся на 2 и степени двойки встречаются гораздо чаще), поэтому среди них обязательно найдется 2^7. ответ. 7 нулей.
D<0, при а∈((3-2√2)/3; (3+2√2)/3). Это один из случаев когда действительных корней не будет. Рассмотрим другой. Множество значений x+1/x состоит из промежутков (-oo; -2] ∪ [2; +oo). Значит, чтобы основное уравнение не имело решений достаточно того, что график функции f(t)=at^2-(a+1)t+5-2a=0 располагается между -2 и 2. Это задается условиями: {a>0 {f(-2)=4a+7>0 {f(2)=3>0 {-2<(a+1)/(2a)<2 в совокупности с {a<0 {f(-2)=4a+7<0 {f(2)=3<0 {-2<(a+1)/(2a)<2 Первая система имеет решение a>1/3. Вторая система решений не имеет. Теперь объеденим с этим решением то, что получилось при исследовании дискриминанта. a∈(3-2√2)/3; +oo) - окончательный ответ.
2)3 69/100-2 57/100=1 12/100=1 3/25