1
36:9*8=32 человека в 6 Б
32:100*80=40 учеников в 6 В
2
Точка (x;y) имеет координату x по оси x, и координату y по оси y.
Отметим вс точку R, чтобы провести MR║AB.
R(x₁;y₁), A(-3;1), B(0;-4), M(2;-1)
x₁ = 2-(0+3) = -1
y₁ = -1-(-4-1) = 4
R(-1;4)
Проведём прямую a по двум точкам (M и R).
Отметим вс точку T, чтобы провести MT⊥AB.
R(x₂;y₂), A(-3;1), B(0;-4), M(2;-1)
x₂ = 2+(-4-1) = -3
y₂ = -1-(0+3) = -4
T(-3;-4)
3
Пусть х кг яблок во втором ящике, тогда в первом 4х.
4х-10=х+8
4х-х=8+10
3х=18
х=6, 6 кг яблок было в во втором ящике, тогда в первом 6×4=24 кг
ответ: 6кг ; 24кг
4
8х-3(2х+1)=2х+4
8х-6х-3=2х+4
2х-3=2х+4
2х-2х=4+3
0=7
х принадлежит пустому множеству.
5.27 уравниваем
√2х²-3х+1=√х²-3х+2
подносим всё уравнение ко второй степени, тогда корень пропадает
2х²-3х+1=х²-3х+2
переносим всё в одну сторону с противоположным знаком
2х²-3х+1-х²+3х-2=0
упрощаем
х²-1=0
х²=1
х=±1
это неполное квадратное уравнение, если будет полное типа ах²±bx±c=0, тогда применяем дискриминант или теорему Виета( за условия что а=1). дискриминант должен быть больше или равно нулю!
так делаем с 5.28 по 5.34 включительно
пройдёмся по остальным уравнениям:
из 5.35 включительно по 5.48
5.35 нужно поднести к квадрату всё уравнение
3х+1=√1-х
(3х+1)²=1-х
раскрываем скобки по формуле:
(а±b)²=a²±2ab+b²
9х²+6х+1=1-х
переносим в одну сторону
9х²+6х+1-1+х=0
9х²+7х=0
так же неполное квадратное уравнение только в ином виде
выносим х за скобки
х(9х+7)=0
х=0 или 9х+7=0
9х=-7
х=-7/9
если полное квадратное смотреть указания выше↑
5.40
√8-6х-х²=6+х
далее к квадрату и по схеме
5.46
если это уравнение поднести к квадрату то в левой части х²+8 умножиться на 4 (так как 2²=4) и будет 4х²+32=(2х+1)²
далее так же по схеме
это касательно уравнений с 5.45 по 5.48
120-12=108 конфет разделили между учениками
108/4=27 учеников было