М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
rinatabd1
rinatabd1
04.07.2021 09:58 •  Математика

Решить, нужно и в трех урнах находятся шары.в первой урне 4 белых 3 черных,во второй 5 белых 2 черных ,в третьей 3 белых 1 черный.изпревой урны перекладывается один шар во вторую,из второй -один шар в третью,из третьей один шар в первую урну.найти вероятность того,что после этого состав шаров в урнах не изменится

👇
Ответ:
zinkovich92
zinkovich92
04.07.2021
Вероятность положить 0 белых 2/7*5/12, тогда вероятность вытащить белый из третьей урны 0,5или (6/12)*(2/7*5/12) (всего 12 из них белых 6) 
вероятность положить 1 белый 5/7*5/12+2/7*7/12, тогда вероятность вытащить белый из 3 урны 7/12*(5/7*5/12+2/7*7/12)(всего 12 из них белых 7) 
вероятность положить 2 белых 5/7*7/12=5/12 тогда вероятность вытащить белый из 3 урны 8/12*5/12(всего 12 из них белых 8) 
проверка 2/7*5/12+5/7*5/12+2/7*7/12+5/7*7/12 =(2*5+25+14+35)/(7*12)=(10+25+14+35)/84=1))) 
складываем вероятности 1/2*2/7*5/12+7/12*5/7*5/12+7/12*2/7*7/12+8/12*5/12=5/84+25/144+14/144+40/144=5/84+79/144 

формула бернулли это разложение бинома ньютона 
полная формула p^6+6p^5q^1+15p^4q^2+30p^3q^3+15p^2q^4+6pq^5+q^5=1 
неудача q это 1-удача (p) q=1-p 
4,8(75 оценок)
Открыть все ответы
Ответ:
matuxh
matuxh
04.07.2021

ответ:Дана функция: f(x)=x³−1.

1.Область определения и значений данной функции f: ограничений нет - x ∈ R.

2.Выяснить, обладает ли функция особенностями, облегчающими исследование, т. е. является ли функция f: 

а) четной или нечетной: f(-x) = -x³−1 ≠ f(x).

                                         f(-x) = -(x³+1) ≠ -f(x).

Значит, функция не чётная и не нечётная.

б) периодической: функция не периодическая.

3.Вычислить координаты точек пересечения графика с осями координат.

С осью Оу при х =0: у = 0³ - 1 = -1.

С осью Ох при у = 0: 0 = х³ - 1,  х³ = 1,  х = ∛1 = 1.

4.Найти промежутки знакопостоянства функции f.

Находим производную: y' = 3x².

Так как производная положительна на всей области определения, то функция только возрастающая.

5.Выяснить, на каких промежутках функция f возрастает, а на каких убывает: в соответствии с пунктом 4 функция возрастает от -∞ до +∞.

6.Найти точки экстремума, вид экстремума (максимум или минимум) и вычислить значения f в этих точках.

Приравниваем производную нулю; 3х² = 0, х = 0.

Имеем 2 промежутка монотонности функции

На промежутках находят знаки производной. Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.

Производная y' = 3x² только положительна.

Так как производная не имеет промежутков смены знака, значит, функция не имеет ни минимума, ни максимума.

7.Исследовать поведение функции f в окрестности характерных точек, не входящих в область определения и при больших (по модулю) значениях аргумента: таких точек нет

Пошаговое объяснение:вроде как-то так

4,6(87 оценок)
Ответ:
nazmiburkanova7
nazmiburkanova7
04.07.2021
Дана функция: f(x)=x³−1.
1.Область определения и значений данной функции f: ограничений нет - x ∈ R.
2.Выяснить, обладает ли функция особенностями, облегчающими исследование, т. е. является ли функция f: 
а) четной или нечетной: f(-x) = -x³−1 ≠ f(x).
                                         f(-x) = -(x³+1) ≠ -f(x).
Значит, функция не чётная и не нечётная.
б) периодической: функция не периодическая.
3.Вычислить координаты точек пересечения графика с осями координат.
С осью Оу при х =0: у = 0³ - 1 = -1.
С осью Ох при у = 0: 0 = х³ - 1,  х³ = 1,  х = ∛1 = 1.
4.Найти промежутки знакопостоянства функции f.
Находим производную: y' = 3x².
Так как производная положительна на всей области определения, то функция только возрастающая.
5.Выяснить, на каких промежутках функция f возрастает, а на каких убывает: в соответствии с пунктом 4 функция возрастает от -∞ до +∞.
6.Найти точки экстремума, вид экстремума (максимум или минимум) и вычислить значения f в этих точках.
Приравниваем производную нулю; 3х² = 0, х = 0.
Имеем 2 промежутка монотонности функции
На промежутках находят знаки производной. Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
Производная y' = 3x² только положительна.
Так как производная не имеет промежутков смены знака, значит, функция не имеет ни минимума, ни максимума.
7.Исследовать поведение функции f в окрестности характерных точек, не входящих в область определения и при больших (по модулю) значениях аргумента: таких точек нет.
Проведите по общей схеме исследование функции и постройте ее график. с подробным решением. функция:
4,8(26 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ