1. Прямая и окружность имеют две общие точки, если расстояние от центра окружности до прямой меньше радиуса окружности.
2. Если прямая АВ - касательная к окружности с центром О и В - точка касания, то прямая АВ и радиус ОВ перпендикулярны.
3. Угол АОВ является центральным, если точка О является центром окружности, а лучи ОА и ОВ пересекают окружность. (отрезки ОА и ОВ будут являться радиусами окружности)
4. Вписанный угол, опирающийся на диаметр, равен 90°.
5. Дано: ∠АСD=31°.
∠ABD = 31° (т.к. он вписанный и опирается на ту же дугу, что и ∠АСD), ∠AOD = 62° (∠AOD центральный и опирается на ту же дугу, что и ∠АСD
. Следовательно он в два раза больше ∠AСD).
6.Если хорды АВ и CD окружности пересекаются в точке Е, то верно равенство
DЕ·ЕС = АЕ·ЕВ.
7.Если АВ- касательная, AD - секущая, то выполняется равенство
АВ² = АD·АС.
8. Если четырехугольник ABCD вписан в окружность, то сумма его противоположных углов равна 180°.
9. Центр окружности, вписанной в треугольник, совпадает с точкой пересечения биссектрис этого треугольника.
10. Если точка А равноудалена от сторон данного угла, то она лежит на биссектрисе этого угла.
11. Если точка В лежит на серединном перпендикуляре, проведенному к данному отрезку, то она равноудалена от концов этого отрезка.
12. Около любого треугольника можно описать окружность.
1)Дано:
ABCK - трапеция, ∠A = ∠B = 90°,
CK=3см, ∠K=45°,
CH⊥AK, AH=HK=
Найти: - ?
= cos ∠K
HK = CK·cos ∠K = 3· см
∠HCK = 90°-45°=45°, т.е. ΔHCK - равнобедренный ⇒СH = HK
= ·CH·(BC + AK) = ·(HK +2HK) = ·HK² = = см²
ответ: 6,75 см².
2)Дано:
ABCK - трапеция, ∠С = ∠D = 90°,
AB=8 см, ∠A=60°,
BH⊥AD, AH=HD=
Найти: - ?
∠A
AH = AB·cos ∠A = 8 · cos 60° = 8 · = 4 см
∠A
BH = AB·sin ∠A = 8 · sin 60° = 8 · = 4√3 см
= ·(AD + BC) = = = 24 √3 см²
ответ: площадь трапеции равна 24√3 см².
Пошаговое объяснение: