Боковая сторона равнобедреного треугольника равна 5. угол при вершине противолежащий основанию равен 120°. найдите диаметр окружности, описанной около этого треугольника.
Проведем радиусы ОА, ОВ, ОС. По условию, угол АСВ = 120 1) Треугольники АОС и ВОС равны по третьему признаку: у них ОС - общая сторона, ОА = ОВ как радиусы одной окружности, АС = ВС по условию. Кроме того, эти треугольники еще и равнобедренные
2) Т.к. треугольники АОС и ВОС равны, то углы АСО и ВСО равны. АСО = ВСО = АСВ : 2 = 120 : 2 = 60
3) Т.к. в равнобедренном треугольнике углы при основании равны, то ОАС = ОСА = 60 в треугольнике АСО и (аналогично) ОВС = ОСВ = 60 в треугольнике ВСО. Поскольку сумма углов ОАС + АСО + АОС треугольника АСО равна 180, то угол АОС тоже равен 60 и треугольник АСО равносторонний, а значит, АО = АС = 4, т.е. радиус окружности равен 4. Но т.к. диаметр равен двум радиусам, то диаметр будет 2 · 4 = 8
1) делилось на 3 Чтобы число делилось на 3, необходимо и достаточно, чтобы сумма цифр этого числа делилась на 3 (4+9+7+*)=(20+*) должно быть кратно 3 вместо звездочки можно поставить 1; 4 или 7 ответ. 4971 4974 4977
2) делилось на 10 Чтобы число делилось на 10, необходимо и достаточно, чтобы оно оканчивалось на 0 ответ. 4970
3) было кратно 9 Чтобы число делилось на 9, необходимо и достаточно, чтобы сумма цифр этого числа делилась на 9 (4+9+7+*)=(20+*) должно быть кратно 9 вместо звездочки можно поставить 7 ответ. 4977
Из одной вершины вторым концом диагонали не будут являться сама вершина и 2 ее соседние вершины, т.е. всего 3 точки. Значит, возможных концов диагоналей из одной вершины на 3 меньше общего числа вершин.
Умножаем на число вершин, т.к. началом диагонали может служить любая вершина.
При таком подсчете каждая диагональ учитывается 2 раза, т.к. диагональ соединяет 2 вершины многоугольника и подсчет выполняется для каждой вершины. Поэтому полученный результат нужно разделить на 2.
1) Треугольники АОС и ВОС равны по третьему признаку: у них ОС - общая сторона, ОА = ОВ как радиусы одной окружности, АС = ВС по условию. Кроме того, эти треугольники еще и равнобедренные
2) Т.к. треугольники АОС и ВОС равны, то углы АСО и ВСО равны. АСО = ВСО = АСВ : 2 = 120 : 2 = 60
3) Т.к. в равнобедренном треугольнике углы при основании равны, то ОАС = ОСА = 60 в треугольнике АСО и (аналогично) ОВС = ОСВ = 60 в треугольнике ВСО. Поскольку сумма углов ОАС + АСО + АОС треугольника АСО равна 180, то угол АОС тоже равен 60 и треугольник АСО равносторонний, а значит, АО = АС = 4, т.е. радиус окружности равен 4. Но т.к. диаметр равен двум радиусам, то диаметр будет 2 · 4 = 8