М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
micha197979
micha197979
01.12.2022 00:25 •  Математика

Вычислить значение вырожения (2015*6-32*27: 6+72054): (50040-49940)

👇
Ответ:
mysll8
mysll8
01.12.2022
1 скобка
2015*6 - 32*27:6 + 72054 = 2015*6 - 8*2*2*3*3*3:6 + 12009*6 =
= 2015*6 - 8*3*6 + 12009*6 = 6*(2015 - 24 + 12009) = 6*14000
2 скобка
50040 - 49940 = 50000 - 49900 = 100
Делим
6*14000:100 = 6*140 = 840
4,8(87 оценок)
Открыть все ответы
Ответ:
yiliamasegorova
yiliamasegorova
01.12.2022

Пошаговое объяснение:

Для удобства набора решения, все \alpha  я заменил на

x

1)

Сначала предварительная подготовка:

\sin^4(x) + \cos^4(x) = (\sin^2(x) + \cos^2(x))^2 - 2\sin^2(x)\cos^2(x) = 1^2 - 2\sin^2(x)\cos^2(x).

То есть

\sin^4(x) + \cos^4(x) = 1^2 - 2\sin^2(x)\cos^2(x) (в цепочке равенств оставил только первый и последний член).

Значит после переноса получаем:

1 - \sin^4(x) - \cos^4(x) = 2\sin^2(x)\cos^2(x).

Теперь работаем с числителем.

\sin^6(x) + \cos^6(x) = (\sin^2(x) + \cos^2(x))^3 - 3\sin^4(x)\cos^2(x) - 3\sin^2(x)\cos^4(x) = 1^3 - 3\sin^2(x)\cos^2(x)(\sin^2(x)+\cos^2(x)) = 1 - 3\sin^2(x)\cos^2(x).

Значит

1 - \sin^6(x) - \cos^6(x) = 3\sin^2(x)\cos^2(x).

Осталось самое приятное: подставить наши результаты в дробь, и понять, что всё получилось

\frac{1 - \sin^4(x) - \cos^4(x)}{1 - \sin^6(x) - \cos^6(x)} = \frac{3\sin^2(x)\cos^2(x)}{2\sin^2(x)\cos^2(x)} = \frac{3}{2}

ч.т.д.

2)

Перемножим дробь "крест-накрест", получим:

(\sqrt{3} - 2\sin(x))(\sqrt{3} + 2\sin(x)) = (2\cos(x) - 1)(2\cos(x) + 1)

по формуле разностти квадратов, получаем:

3 - 4\sin^2(x) = 4\cos^2(x) - 1

переносим в одну часть

4 = 4(\sin^2(x) + \cos^2(x)),

что верно в силу основного тригонометрического тождества. Так как мы тождественными преобразованиями перешли от исходного выражения к тождественному равенству, значит изначально тоже было тождественное равенство, ч.т.д.

4,5(6 оценок)
Ответ:
Olesya22254
Olesya22254
01.12.2022

Пошаговое объяснение:

Для удобства набора решения, все \alpha  я заменил на

x

1)

Сначала предварительная подготовка:

\sin^4(x) + \cos^4(x) = (\sin^2(x) + \cos^2(x))^2 - 2\sin^2(x)\cos^2(x) = 1^2 - 2\sin^2(x)\cos^2(x).

То есть

\sin^4(x) + \cos^4(x) = 1^2 - 2\sin^2(x)\cos^2(x) (в цепочке равенств оставил только первый и последний член).

Значит после переноса получаем:

1 - \sin^4(x) - \cos^4(x) = 2\sin^2(x)\cos^2(x).

Теперь работаем с числителем.

\sin^6(x) + \cos^6(x) = (\sin^2(x) + \cos^2(x))^3 - 3\sin^4(x)\cos^2(x) - 3\sin^2(x)\cos^4(x) = 1^3 - 3\sin^2(x)\cos^2(x)(\sin^2(x)+\cos^2(x)) = 1 - 3\sin^2(x)\cos^2(x).

Значит

1 - \sin^6(x) - \cos^6(x) = 3\sin^2(x)\cos^2(x).

Осталось самое приятное: подставить наши результаты в дробь, и понять, что всё получилось

\frac{1 - \sin^4(x) - \cos^4(x)}{1 - \sin^6(x) - \cos^6(x)} = \frac{3\sin^2(x)\cos^2(x)}{2\sin^2(x)\cos^2(x)} = \frac{3}{2}

ч.т.д.

2)

Перемножим дробь "крест-накрест", получим:

(\sqrt{3} - 2\sin(x))(\sqrt{3} + 2\sin(x)) = (2\cos(x) - 1)(2\cos(x) + 1)

по формуле разностти квадратов, получаем:

3 - 4\sin^2(x) = 4\cos^2(x) - 1

переносим в одну часть

4 = 4(\sin^2(x) + \cos^2(x)),

что верно в силу основного тригонометрического тождества. Так как мы тождественными преобразованиями перешли от исходного выражения к тождественному равенству, значит изначально тоже было тождественное равенство, ч.т.д.

4,5(56 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ