М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
NikitaAleksandrov09
NikitaAleksandrov09
08.04.2022 15:41 •  Математика

Пароход путь между пристанями 8 часов со скоростью 30км/час. на обратном пути то же расстояние теплоход за 6 часов. с какой скоростью шёл теплоход на обратном пути?

👇
Ответ:
gnatiuk1981
gnatiuk1981
08.04.2022
8х30=240(км)-расстояние между пристанями
240:6=40(км/ч)- скорость на обратном пути
ответ: 40км/ч шел теплоход на обратном пути.
4,4(94 оценок)
Открыть все ответы
Ответ:
Киря2006555
Киря2006555
08.04.2022

Условие: На сторонах ВС и CD квадрата ABCD взяли точки K и M так, что ∠MAK = 45°. Известно, что KM = 13 ,KC = 5 ,CM = 12. Найдите сторону квадрата ABCD.

Дано: K ∈ BC, M ∈ CD, ∠MAK = 45°, KM = 13 ,KC = 5 ,CM = 12.

Найти: BC.

Осуществим поворот ΔAMD на 90° против часовой стрелки ⇒ ΔAMD переходит в ΔAM₁B, ΔAMD = ΔAM₁B.

∠BAD = ∠BAK + ∠MAK + ∠MAD = 90°  ⇒  ∠BAK + ∠MAD = 90° - ∠MAK = 90° - 45° = 45°

Из равенства ΔAMD = ΔAM₁B следует, что ∠MAD = ∠BAM₁, значит, ∠BAK + ∠BAM₁ = 45°.

ΔMAK = ΔM₁AK по двум сторонам и углу между ними:

AM = AM₁ - так как ΔAMD = ΔAM₁BАК - общая сторона∠MAK = ∠M₁AK = 45°

Отсюда следует, что ∠АКМ = АКМ₁.

Аналогичным образом, осуществив поворот ΔAВК на 90° по часовой стрелке, можно утверждать, что ∠AMK = ∠AMD.

Заметим, что биссектрисы АК и АМ внешних углов при вершинах К и М ΔКСМ пересекаются в точке А, то есть точка А является центром вневписанной окружности ΔКСМ ⇒ AB = AD = AH - радиусы вневписанной окружности.

КВ = КН, MD = MH - как отрезки касательных

BC + СD = (BK + CK) + (CM + MD) = (KH + CK) + (CM + MH) = CK + CM + (KH + MH) = CK + CM + MK = 5 + 12 + 13 = 30

BC + СD = 30   ⇒   BC + BC = 30   ⇒   BC = 15

ответ: 15.


На сторонах вс и cd квадрата abcd взяли точки k и m так, что угол mak равен 45градусов. известно, чт
4,4(22 оценок)
Ответ:
pazyny
pazyny
08.04.2022

Определим центр вневписанной окружности ΔCMK, которая касается MK. Центр вневписанной окружности в треугольник лежит на пересечении биссектрисы внутреннего угла, противолежащего стороне касания, и биссектрис двух внешних углов, прилежащих к стороне касания.

Пусть центр это т. О, тогда KO - биссектриса ∠BKM; BO - биссектриса ∠DMK; OC - биссектриса ∠BCM.

Сумма внутренних углов треугольника равна 180°.

В ΔMKO:

∠MOK = 180°-(∠OMK+∠OKM)

Биссектриса делит угол пополам.

∠MOK = 180°-(∠DMK:2 + ∠BKM:2);

∠MOK = 180°-(∠DMK+∠BKM):2.

Внешний угол треугольника равен сумме двух внутренних, не смежных с ним.

Для ΔCMK:

∠BKM = ∠KMC+∠KCM;

∠DMK = ∠MKC+∠MCK.

Тогда получим:

∠MOK = 180°-(∠MKC+∠MCK + ∠KMC+∠KCM):2;

∠MOK = 180°-(180°+90°):2;

∠MOK = 180°-270°:2 = 180°-135°;

∠MOK = 45°.

Диагонали квадрата делят угол пополам.

Для квадрата ABCD:

CA - биссектриса ∠BCD.

Заметим, что ∠MAK = 45° = ∠MOK и CA совпадает с CO, тогда т. А совпадает с т. О.

По определению вневписанная окружность касается продолжений CM и CK. Тогда радиус равен расстоянию от A до CM, то есть стороне квадрата. Значит окружность содержит точки D и B. CD и CB - касательные к вневписанной окружности.

Пусть P точка касания со стороной MK.

Отрезки касательных проведённых из одной точки к одной окружности равны.

Поэтому MD=MP и KP=KB.

PΔCMK = CM+MK+CK;

CM+MP+PK+CK = 12+13+5;

CM+BD+CK+KM = 30;

2·CD = 30;

CD = 30:2 = 15.

ответ: 15.


На сторонах вс и cd квадрата abcd взяли точки k и m так, что угол mak равен 45градусов. известно, чт
4,4(76 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ