1. Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно между ними. FH ⊥ЕD.
∠Н=∠C=90°
Искомое расстояние - длина отезка FH.
Т.к. ЕF биссектриса, в прямоугольных треугольниках ∆ СЕF и ∆ HЕF
∠СЕF=∠HEF, EF- общая гипотенуза.
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углуы другого прямоугольного треугольника, то такие треугольники равны.
∆ СЕF=∆ HЕF Сходственные элементы равных треугольников равны. =>
FH=FC=13 см.
2. Пусть данный катет АС, угол - А
На произвольной прямой m отложим отрезок, равный длине катета АС.
Обозначим его концы А и С.
На сторонах заданного угла А циркулем радиуса=АС с центром в т.А сделаем насечки. Обозначим их О и М.
Соединим О и М.
Из т. А построенного на m катета проведем тем же раствором циркуля полуокружность.
Циркулем измерим ОМ и из т.С отложим полуокружность до пересечения с первой в т.К.
АС=АМ, АК=АО, отрезок СК равен отрезку ОМ, ⇒ ∆ АКС=∆ АОМ. Следовательно, угол КАС равен заданному.
Катет и прилежащий к нему угол построены.
На равном расстоянии по обе стороны от С отметим на прямой m т.1 и т.2.
Из этих точек, как из центров, начертим полуокружности так, чтобы они пересеклись по обе стороны от прямой m.
Точки пересечения соединим. Построен перпендикуляр к прямой m через т. С ( это стандартный построения перпендикуляра, и он наверняка Вам знаком).
Точку пересечения перпендикуляра с другой стороной угла А обозначим В.
Искомый треугольник АВС по катету АС и прилежащему углу А построен.
3. Рассмотрим тр к АВС
уголВАС+ВСА=180°-110°=70°
значит сумма углов ВАС+ВСА=70°, след -но сумма углов ОАС+ОСА=70°:2=35° ( так как АО иСО-биссектриссы)
угол АОС=180°-ОАС+ОСА=180°-35°=145°
Псть одно дерево дает n золотых монет. Возможны две модели поведения.
1. Буратино-Жадина. Хочет как можно быстрее получить как можно большую прибыль, поэтому каждый раз закапывает все золотые монетки. Во вторник он получит 5*n монет, в среду 5*n^2, и т. д. Если при этом выполнены условия задачи, то
5*n^2≤1992≤5*n^4
n^2≤398,4≤n^4
Решим в целых числах.
5≤n≤19
Таким образом он никогда не наберет 1992 монеты, потому, что 1992 не крано 5.
Это было очевидно с самого начала. Оценка n понадобится нам чуть позже.
2. Буратино-Маньяк. Ему не важно сколько он потратит дней. Он может закапывать любое число монет, если они у него есть, лишь бы когда-нибудь набрать ровно 1992. Пусть дерево дает урожай n монет. Сколько бы монет он не посадил, прибыль будет кратна n-1 (одну монету он тратит на выращивание дерева) . Чтобы достичь цели ему необходимо, чтобы 1992-5=1987 делилось на n-1
Но число (проверил по таблице) , значит, n=2 или n=1988
В первом случае он явно не укладывается в 5 дней (см. вариант 1).
Во втором случае он достигне резултата в первый же день.
Подробнее - на -
Пошаговое объяснение: