М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anyasaveleva2
anyasaveleva2
02.03.2023 08:42 •  Математика

Средний вес дождевой капли одна двенадцатая грамма.определить число капель дождя,упавших на 1 квадратный метр земли,если дождь дал слой воды толщиной 2,2мм

👇
Ответ:
Оля010720
Оля010720
02.03.2023
1м2 *0,0022м =0,0022м3 - объем выпавших на один метр квадратный капель; 1/12г / 0,001г/мм3=83,333мм3 - объем одной капли.
0,0022м3=2200*10^6 мм3; 2200*10^6 / 83.333=24 400 106 капель
4,5(60 оценок)
Открыть все ответы
Ответ:
Wer77
Wer77
02.03.2023
найти двойным интегрированием центр масс однородной плоской фигуры, ограниченной замкнутой линией

Вспомним как находятся координаты точки центра масс:

x_0= \frac{ \int\limits \int\limits{x} dxdy }{S}

y_0= \frac{ \int\limits \int\limits {y}dx dy }{S}

Где S- площадь фигуры

Построим график функции : y=+/- \sqrt{x^2-x^4}
(смотри приложение к решению)

Найдем нули функции: y=0 при х=0, х=1, х=-1
Нас интересует только та часть графика где х≥0

Итак, найдем площадь фигуры. где 0≤х≤1

\int\limits^1_0 dx( \int\limits^{x \sqrt{1-x^2}}_{-x \sqrt{1-x^2}} dy)= \int\limits^1_0 dx(x \sqrt{1-x^2-(-x \sqrt{1-x^2}) })=

= \int\limits^1_0 {2x \sqrt{1-x^2}} \, dx =2 \int\limits^1_0 {x \sqrt{1-x^2} } \, dx=

сделаем замену: 1-x^2=t

-2xdx=dt

xdx=-dt/2 при этом границы интегрирования поменяются местами. 

=2 \int\limits^0_1 {- \frac{1}{2} \sqrt{t} \, dt=- \int\limits^0_1 { \sqrt{t}} \, dt= \int\limits^1_0 { \sqrt{t}} \, dt = \frac{2}{3}t^{3/2}|_0^1= \frac{2}{3}

Итак площадь фигуры 2/3

Найдем ординату:

\int\limits \int\limits {x}dxdy= \int\limits^1_0 {x}dx \int\limits^{x \sqrt{1-x^2}}_{-x \sqrt{1-x^2}} dy= \int\limits^1_0 {x(x \sqrt{1-x^2}+x \sqrt{1-x^2}}) \, dx=

=2 \int\limits^1_0 {x^2 \sqrt{1-x^2} } \, dx=

сделаем замену:

x=Sint 

dx=Costdt 

1-x^2=Cos^2t

Границы  интегрирования 0≤t≤π/2

=2 \int\limits^{ \pi /2}_0 {Sin^2tCost \sqrt{Cos^2t}} \, dt =2 \int\limits^{ \pi /2}_0 {(Sin^2tCos^2t}) \, dt=

=2 \int\limits^{ \pi /2}_0 { \frac{1}{4}Sin^22t} \, dt= \frac{1}{2} \int\limits^{ \pi /2}_0 {Sin^22t} \, dt=

сделаем еще раз замену:

2t=a

2dt=da

границы интегрирования 0≤a≤π

= \frac{1}{2} \int\limits^ \pi _0 { \frac{1}{2}Sin^2a} \, da= \frac{1}{4} \int\limits^ \pi _0 { \frac{1-Cos2a}{2}} \, da= \frac{1}{8} \int\limits^ \pi _0 {1-Cos^a} \, da=

= \frac{1}{8}( \int\limits^ \pi _0 da- \int\limits^ \pi _0 {Cos2a} \, da=

и последняя замена: 2a=s; 2da=ds

= \frac{1}{8} \int\limits^ \pi _0 {da} - \frac{1}{8} \int\limits^{2 \pi} _0 \frac{1}{2} {Cos s} ds= \frac{1}{8}a|_0^{ \pi } - \frac{1}{16}Sin s|_0^{2 \pi }=

= \frac{1}{8}( \pi -0)- \frac{1}{16}(Sin {2 \pi }-Sin 0)= \frac{1}{8} \pi

Таким образом ордината точки: 

x_0= \frac{ \pi }{8}: \frac{2}{3}= \frac{3 \pi }{16}

Найдем абсциссу, т. е. y₀

\int\limits \int\limits{y}dxdy= \int\limits^1_0 {dx} \int\limits^{x \sqrt{1-x^2} }_{-x \sqrt{1-x^2}} ydy= \int\limits^1_0 dx \frac{y^2}{2}|_{-x \sqrt{1-x^2} }^{x \sqrt{1-x^2} }=

= \frac{1}{2} \int\limits^1_0 {(x^2-x^4)-(x^2-x^4)}\, dx=0

Таким образом абсцисса точки: 

y_0=0: \frac{2}{3}=0

центр масс ( \frac{3 \pi }{16};0)

 

Найти двойным интегрированием центр масс однородной плоской фигуры, ограниченной замкнутой линией
4,7(34 оценок)
Ответ:
ariadnaorekhova
ariadnaorekhova
02.03.2023
Обратная теорема, теорема, условием которой служит заключение исходной (прямой) теоремы, а заключением — условие. Обратной к О. т. будет исходная (прямая) теорема. Таким образом, прямая и О. т. взаимно обратны. Например, теоремы: "если два угла треугольника равны, то их биссектрисы равны" и "если две биссектрисы треугольника равны, то соответствующие им углы равны" — являются обратными друг другу. Из справедливости какой-нибудь теоремы, вообще говоря, не следует справедливость обратной к ней теоремы. Например, теорема: "если число делится на 6, то оно делится на 3" — верна, а О. т. : "если число делится на 3, то оно делится на 6" — неверна. Даже если О. т. верна, для её доказательства могут оказаться недостаточными средства, используемые при доказательстве прямой теоремы. Например, в евклидовой геометрии верны как теорема "две прямые на плоскости, имеющие общий перпендикуляр, не пересекаются", так и обратная к ней теорема "две непересекающиеся прямые на плоскости имеют общий перпендикуляр". Однако вторая (обратная) теорема основывается на евклидовой аксиоме параллельных, тогда как для доказательства первой эта аксиома не нужна. В Лобачевского геометрии вторая просто неверна, тогда как первая остаётся в силе. О. т. равносильна теореме, противоположной к прямой, т. е. теореме, в которой условие и заключение прямой теоремы заменены их отрицаниями. Поэтому прямая теорема равносильна теореме, противоположной к обратной, т. е. теореме, утверждающей, что если неверно заключение прямой теоремы, то неверно и её условие. Известный "доказательства от противного" как раз и представляет собой замену доказательства прямой теоремы доказательством теоремы, противоположной к обратной. Справедливость обеих взаимно обратных теорем означает, что выполнение условия любой из них не только достаточно, но и необходимо для справедливости заключения .
Обратная теорема Пифагора:
Для всякой тройки положительных чисел a, b и c, такой, что a^2 + b^2 = c^2, существует прямоугольный треугольник с катетами a и b и гипотенузой c.
4,5(7 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ