Сперва заметим, что E = 1, так как сумма двух четырёхзначных чисел меньше 20000. F ≠ 2 (так как A + E ≤ 10) из чего F = 0. Если A = 8, то в разряд "A + E" нужно сделать перенос, тогда B = 9 и B + 0 + 1 (перенос) = 10, но тогда C = 0, чего не может быть. Значит, A = 9. Посмотрим, что получилось:
9BCD + 10GB = 10CBH
B + 1 (перенос, так как B ≠ C) = C
Если в разряде "C + B" нет переноса, то:
G + C = 10 + B
Отняв B + 1 = C, получаем G = 9, чего не может быть. Тогда перенос был, следовательно:
G + C + 1 = 10 + B
Теперь G = 8. Остались цифры 2, 3, 4, 5, 6, 7.
D + B = 10 + H
Заменив B на C - 1, получаем:
D + C = 11 + H
Минимальное H равно 2, максимальные D и C равны 6 и 7, но тогда, 6 + 7 = 11 + 2, следовательно, H = 2. Так как C = B + 1, то B и C - два последовательных числа и C ≠ 7 (иначе D = B = 6), из чего C = 6, B = 5, D = 7. Получилось:
9567 + 1085 = 10652
ответ: 95671082.
1.Найти радиус описанной окружности (R) для равнобедренного треугольника с основанием 10 см и боковой стороной 13 см
.
h = √(169 - 25) = √144 = 12 см.
S = (1/2)*10*12 = 60 см².
R = abc/(4S) = (13*13*10)/(4*60) = 169/24 ≈ 7,04167 см.
2.Найдите радиус вписанной окружности (r) для квадрата,периметр которого 16 см.
Сторона равна 16/4 = 4 см.
Радиус r = 4/2 = 2 см.
3.В прямоугольном треугольнике ABC катеты AB и BC равны соответственно 20 см и 21 см.Найти гипотенузу AC и косинус угла А
АС = √(20² + 21²) = √(400 + 441) = √841 = 29 см.
4.Найти высоту трапеции,основания которой 1 см и 5 см,боковая сторона 4 см.
Можно найти только в случае, если трапеция равнобокая.
h = √(4² - (5 - 1)/2)²) = √(16 - 4) = √12 = 2√3 см.
То что получилось дели на 34(п)-заняли книгами
ответ:столько-то полок