Для поиска корня уравнения 19 - 2(3x + 8) = 2x - 37 используем тождественные действия, так как они используются для нахождения корней линейных уравнений.
Применим для открытия скобок два правила.
1. Дистрибутивный закон умножения: a * (b + c) = a * b + a * c;
2. Как выполнить открытие скобок перед которой стоит минус.
19 - 2(3x + 8) = 2x - 37;
19 - 2 * 3x - 2 * 8 = 2x - 37;
19 - 6x - 16 = 2x - 37;
Группируем подобные в разных частях:
-6x - 2x = -37 - 19 + 16;
-8 * x = -40;
x = -40 : (-8);
x = 5.
Пошаговое объяснение:
a) наибольшее 36 и наименьшее 9
б) наибольшее 49 и наименьшее 1
в) наибольшее 81 и наименьшее 0
г) наибольшее 100 и наименьшее 0
Пошаговое объяснение:
Парабола y=x² на интервале (-∞;0) строго убывает, а на интервале (0;+∞) строго возрастает. Поэтому на промежутках содержащих значение х=0 наименьшее значение функции всегда 0, а наибольшее значение функции определяется в граничных точках.
В промежутках не содержащих значение х=0 наибольшее и наименьшее значения функции определяется в граничных точках.
а) [3; 6] не содержит х=0, поэтому наибольшее и наименьшее значения функции определяется среди y(3)=3²=9 и y(6)=6²=36
б) [-7; -1] не содержит х=0, поэтому наибольшее и наименьшее значения функции определяется среди y(-7)=(-7)²=49 и y(-1)=(-1)²=1
в) [-2; 9] содержит х=0, поэтому наибольшее значение функции определяется среди y(-2)=(-2)²=4 и y(9)=9²=81, а и наименьшее значение функции равно 0
г) [-10; 4] содержит х=0, поэтому наибольшее значение функции определяется среди y(-10)=(-10)²=100 и y(4)=4²=16, а и наименьшее значение функции равно 0