ДУМАЕМ 1)Догонят из-за разности скоростей. 2) Второму надо проехать больше - третий за 15 минут уедет. РЕШАЕМ Время встречи первого - догнал третьего. t(1,3) = S / (V1-V3) = 30/(15-9) = 5 часов - Переводим 15 мин = 0,25 часа. Вычисляем путь третьего за 0,25 часа S3 = V3*t3 = 9*0.25 = 2.25 км. Время встречи встречи второго - догнал третьего t(2,3) = (S +S3)/(V2-V3) =(30+2.25)/(15-9) = 5.375 час = 5 час 22.5 мин. Интервал будет в 22.5 мин. - УРА!, но не правильно. ДУМАЕМ ещё сильнее. НАДО найти ИНТЕРВАЛ времени, который возник из-за разности путей после разного времени старта t3=15 мин за счет разности скоростей 15-9. РЕШАЕМ В ОДНО УРАВНЕНИЕ. dT= (V3*t3) / (V2-V3) = 9*0.25/(15-9) = 9/6*0.75= 0.375 час = 22,5 мин. Вот это ПРАВИЛЬНОЕ решение
Событие Р(А) состоит из двух - Р1 - взять ЛЮБУЮ деталь И -Р2 - взять ГОДНУЮ. 1) Вероятность взять любую Р1(i) - это доля каждого цеха в выпуске продукции исходя из пропорции в производстве. р1(1)= р1(2) = 2/5=0,4 и р1(3) = 1/5 = 0,2. 2) Для упрощения (потом будет видно) сосчитаем вероятность взять БРАК, а не годную деталь. Три цеха - три события ИЛИ - для них вероятности СУММИРУЮТСЯ. Для каждого цеха взять БРАК - событие И - И цех И брак- вероятности УМНОЖАЮТСЯ. Вероятность БРАКОВАННОЙ детали - Q(А) = 0,4* 0,1 + 0,4*0,15 + 0,2* 0,05 = 0,04+0,06+0,01 = 0,11 = 11% - брак. Вероятность НЕ бракованной -P(A) = 1 - Q(A) = 99% - ГОДНЫХ. ОТВЕТ: Вероятность НЕ бракованной равна 99%. Справочно: В таблице приведен расчет и по формуле Байеса из которой видно, что наиболее вероятно это будут детали 1-го или 2-го цехов.