Пошаговое объяснение:
A (-2; 2; 1); B (3; -1; 0); C (4; 4; 0); D (1; -1; 1) .
1 . Координати векторів AB( 5;- 3 ;- 1 ) , BC( 1 ; 5 ; 0 ) , CD(- 3 ;- 5 ; 1 ) ,
тоді AB - 3BC + 4CD = ( 5;- 3 ;- 1 ) - 3( 1 ; 5 ; 0 ) + 4(- 3 ;- 5 ; 1 ) = ( 5;- 3 ;- 1 ) -
- ( 3 ; 15 ; 0 ) + (- 12 ;- 20 ; 4 ) = (- 10 ;- 38 ; 3 ) .
2 . | AB | = √ [ 5² + (- 3 )² + (- 1 )² ] = √( 25 + 9 + 1 ) = √ 35 ;
| BC | = √ [ 1² + 5² + 0² ] = √ 26 ;
| CD | = √ [ (- 5)² + (- 3 )² + 1² ] = √ 35 .
4 . Коорд . вектора AD( 3 ;- 3 ; 0 ) , тоді скалярний добуток
(AB + CD )*AD = ( ( 5;- 3 ;- 1 )+(- 3 ;- 5 ; 1 ) )*( 3 ;- 3 ;0 ) = ( 2;- 8; 0 )*( 3 ;- 3 ; 0 )=
= 2*3 + (- 8 )*(- 3 ) + 0*0 = 30 .
6 . Складемо відношення відповідних коорд . векторів AB( 5;- 3 ;- 1 ) і
CD(- 3 ;- 5 ; 1 ) : 5/(- 3 ) = - 3/(- 5 ) = - 1/1 - це неправильна рівність ,
тому вектори неколінеарні .
7.Обчислимо скалярний добуток векторів AB( 5;- 3 ;- 1 ) і CD(- 3 ;- 5 ; 1 ) :
AB*CD = ( 5;- 3 ;- 1 )*(- 3 ;- 5 ; 1 ) = 5*(- 3 ) + (- 3 )*(- 5 ) + (- 1 )*1 = - 1 ≠ 0 ,
тому дані вектори не ортогональні .
Вправи 3 і 5 легкі , лише підставити у формули .
Y = x² - парабола (на рисунке синяя линия)
х = 3 - прямая перпендикулярная оси абсцисс, проходящая через точку (3,0) (зелёная линия на рисунке)
y = 0 - прямая, совпадающая с осью абсцисс (красная линия на рисунке)
Найдём ещё одну прямую, которая ограничивает параболу по иксу. Для этого в уравнение параболы подставляем y=0 и решаем уравнение относительно икса: x = 0 - ещё одна прямая перпендикулярная оси абсцисс (левая зелёная линия).
В итоге получается область серого цвета, площадь которой надо найти. Площадь находится с определённого интеграла от параболы в пределах от х=0 до х=3 (это будут пределы интегрирования).
Пошаговое объяснение:
Решим систему:
89 - простое число, которое имеет делители 1 и 89.
Отсюда получаем, (a+b)=1 и (a-b)=89.
a=45, b=44
Подставим значения и получим N=1972.
2. Площадь квадрата со стороной 100 будет равна 10000 кв.ед.
Площадь квадрата со стороной 80 равна 6400 кв.ед.
Из площади большого квадрата вычтем площадь вырезанного квадрата, получим 10000-64000=3600 кв.ед.
Отсюда находим сторону нового квадрата,