2.найдите точку минимума функции у=(9-x)e9-x 3.найдите наименьшее значение функции у=4cosx+13x+9 на отрезке (0; 3π/2) 4.решить уравнение (cos2x-cosx+1)/(2sinx-√3)=0 , кто шарит в , ,
cosx=0 при √3-2sinx≠0 | 2cosx-1=0 при √3-2sinx≠0 x=π/2 +πn; n∈Z и √3-2sinx≠0 | 2cosx=1 при √3-2sinx≠0 | cosx=1/2 при √3-2sinx≠0 | x=±arccos(1/2)+2πn; n∈Z и √3-2sinx≠0 | x=±π/3 +2πn; n∈Z и √3-2sinx≠0 ответ: смотри выше (их 2)
Из книги выпало несколько идущих подряд листов. Номер последней страницы перед выпавшими листами: 274 Номер первой страницы после выпавших листов записывается теми же цифрами, но в другом порядке: 427, 742. Поскольку номер последней страницы перед выпавшими листами чётный, то номер первой страницы после выпавших листов должен быть нечётным, поскольку на одном листе идет две страницы. 427 - нечётное число 742 - чётное число. Посчитаем сколько листов выпало (вычтем также 1, поскольку страница 274 не выпала - она является последней): 427-274-1=152 страницы выпало 152÷2=76 листов (1 лист = 2 страницам) ответ: 76 листов.
Из книги выпало несколько идущих подряд листов. Номер последней страницы перед выпавшими листами: 274 Номер первой страницы после выпавших листов записывается теми же цифрами, но в другом порядке: 427, 742. Поскольку номер последней страницы перед выпавшими листами чётный, то номер первой страницы после выпавших листов должен быть нечётным, поскольку на одном листе идет две страницы. 427 - нечётное число 742 - чётное число. Посчитаем сколько листов выпало (вычтем также 1, поскольку страница 274 не выпала - она является последней): 427-274-1=152 страницы выпало 152÷2=76 листов (1 лист = 2 страницам) ответ: 76 листов.
Приравняем к 0.
e9-x(8-x)=0
e9-x=0 или 8-x=0
нет решений. x=8
ответ:8