Чтобы накачать в бак 117 л воды, требуется на 5 минут больше времени, чем на то, чтобы выкачать из него 96 л воды. за одну минуту можно выкачать на 3 л воды больше, чем накачать. сколько литров воды накачивается в бак за минуту?
Х- количество воды, которое накачивается в бак за минуту. Тогда за минуту выкачиваться будет (х+3) литров воды. 117 литров воды накачается за 117/х минут, 96 литров воды выкачается из бака за 96/(х+3) минут. Чтобы накачать в бак 117 л воды, требуется на 5 минут больше времени, чем на то, чтобы выкачать из него 96 л воды.», получаем следующее уравнение: 117/х=96/(х+3)+5 117(х+3)=96х+5х(х+3) 5х²-6х-351=0 D=36+20*351=7056=84² x=(6+84)/10=9 ответ: за минуту можно накачать 9 литров воды.
Положение центра вписанной окружности определим, узнав высоту трапеции. Тогда r = 4/2 = 2. Окружность, описанная около трапеции, является одновременно и описанной около треугольника, стороны которого - диагональ, боковая сторона и большее основание. Диагональ равна: Радиус описанной окружности равен: Площадь треугольника равна: S = (1/2)*8*4 = 16 кв.ед. Тогда Так как центр описанной окружности лежит на оси симметрии трапеции. то определим его положение: H+Δ = √(R² - 1²) = √( 16.01563-1) = √ 15.01563 = 3.875. Отсюда Δ = 3.875 - 4 = -0,125. Значит, центр этой окружности лежит внутри контура трапеции - на 0,125 выше нижнего основания. ответ: расстояние между центрами вписанной и описанной окружностей равно 2-0,125 = 1,875.
Пусть х литров расходует легковой автомобиль на 100 км, тогда грузовой расходует х+10 литров бензина. Легковой автомобиль проезжает у км на 1 литре, тогда у-5 км проезжает грузовой автомобиль на 1 литре бензина. Составим и решим систему уравнений х*у=100 (х+10)/100=1/(у-5)
Выразим значение х из первого уравнения: х=100/у Подставим его во второе уравнение: (100/у+10)/100=1/(у-5) 100/у:100+10/100=1/(у-5) (сократим на 10) (100/у+10)/10=10/(у-5) 10/у+1=10/(у-5) (умножим на у(у-5)) 10у*(у-5)/у+1у(у-5)=10*у(у-5)/(у-5) 10(у-5)+у²-5у=10у 10у-50+у²-5у-10у=0 у²-5у-50=0 D=a²-4bc=(-5)²-4*1*(-50)=25+200=225 у₁=(-b+√D)/2a=(-(-5)+15)/2*1=20/2=10 у₂=(-b-√D)/2a=(-(-5)-15)/2*1=-10/2=-5<0 - не подходит. ответ: легковой автомобиль, расходуя 1 л бензина, может преодолеть 10 км.
Тогда за минуту выкачиваться будет (х+3) литров воды.
117 литров воды накачается за 117/х минут,
96 литров воды выкачается из бака за 96/(х+3) минут.
Чтобы накачать в бак 117 л воды, требуется на 5 минут больше времени, чем на то, чтобы выкачать из него 96 л воды.», получаем следующее уравнение:
117/х=96/(х+3)+5
117(х+3)=96х+5х(х+3)
5х²-6х-351=0
D=36+20*351=7056=84²
x=(6+84)/10=9
ответ: за минуту можно накачать 9 литров воды.