3/8, 2/5, 1/2.
Пошаговое объяснение:
Если при разложении знаменателя обыкновенной несократимой дроби среди простых множителей содержатся только 2 и 5, то такую дробь можно представить в виде конечной десятичной.
1/3, знаменатель 3 делится на 3, представить в виде конечной десятичной дроби нельзя;
3/8, знаменатель 8 = 2•2•2, не содержит других простых множителей, кроме 2 и 5, такую дробь можно представить в виде конечной десятичной дроби;
2/9, знаменатель 9 делится на 3, представить в виде конечной десятичной дроби нельзя;
2/5, знаменатель 5 указывает на то, что такую дробь можно представить в виде конечной десятичной дроби;
4/7, знаменатель дроби делится на 7, а потому представить в виде конечной десятичной дроби нельзя;
1/2, знаменатель 2 указывает на то, что такую дробь можно представить в виде конечной десятичной дроби.
1. У каждой десятичной дроби можно выделить целую часть.
2. Целую часть от дробной части в
десятичной записи числа отделяют запятой.
3. В записи десятичной дроби после
запятой может быть бесконечное число знаков (например, число π "пи").
4. Если в конце десятичной дроби
приписать несколько нулей, то получим тоже самое число (2,34=2,340000).
5. Если в конце десятичной дроби
отбросить имеющиеся нули, то получим тоже самое число (54,7000=54,7).
6. Большая дробь на координатном луче расположена правее от меньшей.
7. Меньшая дробь на координатном луче расположена левее от большей.
8. Из обыкновенной дроби в десятичную легко перевести ту дробь, у которой в знакменателе числа 10, 100, 1000...
9. Чтобы сложить десятичные дроби,
нужно действовать также, как при сложении многозначных чисел, следя за запятой.
Например: 5.4+6.2. Сложим целые части: 5+6=11; дробные: 4+2=6. Получаем 11.6.
10. Из двух десятичных дробей больше та, которая находится правее на луче. Если говорить о положительных числах (например, 6.7 и 10.1), то больше та, что больше по модулю). Если говорим об отрицательных числах (напрмер, -6.2 и -8.9), то больше та, которая меньше по модулю. Ну, если сравнивать отрицательное и положительное число, то больше, конечно, всегда положительное число.
11. Из двух десятичных дробей с равными целыми частями больше та, у которой после запятой в разряде десятых число большее.
12. Из двух десятичных дробей с равными целыми частями и равными цифрами в разряде десятых больше та, у которой в разряде сотен число большее.
13. Чтобы узнать на сколько одно число
больше или меньше другого, нужно от большего числа отнять меньшее число.
(345+65)-x=65
410-x=65
x=410-65
x=345
234-(x+34)=50
x+34=234-50
x+34=184
x=184-34
x=150
(57+x)-27=66
57+x=66+27
57+x=93
x=93-57
x=36