Вывод: числа 1095 и 738 не являются взаимно простыми числами, так как имеют наибольший общий делитель, отличный от единицы.
Правило нахождения НОД: чтобы найти наибольший общий делитель, нужно разложить числа на простые множители и найти произведение их совместных простых множителей, взятых с наименьшим показателем степени.
У чисел 1095 и 738 один совместный общий множитель - число 3.
Заметим, что код состоит из разных цифр, иначе попарные суммы бы повторялись. Пусть код состоит из цифр a < b < c < d, тогда a + b = 4, c + d = 15.
Если d < 8, то c + d < 7 + 8 = 15, чего быть не может, поэтому d = 8 или 9, а c = 7 или 6 соответственно. Аналогично, a = 0 или 1, иначе a + b ≥ 2 + 3 = 5 (тогда b = 4 или 3).
Перебираем варианты четверок a, b, c, d: 1) 0, 4, 7, 8 – не подходит, не получить, например, 9 2) 0, 4, 6, 9 – не подходит, не получить 7 3) 1, 3, 7, 8 – не получить 7 4) 1, 3, 6, 9 – подходит!
1095 = 3 * 5 * 73 (73 - простое число, дальше не раскладывается)
738 = 2 * 3 * 3 * 41 (41 - простое число, см. таблицу простых чисел)
НОД (1095; 738) = 3 - наибольший общий делитель
Вывод: числа 1095 и 738 не являются взаимно простыми числами, так как имеют наибольший общий делитель, отличный от единицы.
Правило нахождения НОД: чтобы найти наибольший общий делитель, нужно разложить числа на простые множители и найти произведение их совместных простых множителей, взятых с наименьшим показателем степени.
У чисел 1095 и 738 один совместный общий множитель - число 3.