Правила умножения и деления алгебраических дробей
Умножение и деление алгебраических дробей выполняется по тем же правилам, по которым проводятся соответствующие действия с обыкновенными дробями. Напомним их.
Нам известно, что при умножении обыкновенных дробей отдельно перемножаются числители и отдельно – знаменатели, первое произведение записывается числителем, а второе – знаменателем. Например, .
А деление обыкновенных дробей заменяется умножением на дробь, обратную делителю. К примеру, .
Теперь можно увидеть отчетливое сходство с правилами умножения и деления алгебраических дробей, которые мы сейчас и сформулируем.
Умножение двух и вообще любого числа алгебраических дробей в результате дает дробь, числитель которой равен произведению числителей, а знаменатель – произведению знаменателей перемножаемых дробей. Этому правилу отвечает равенство , где a, b, c и d – некоторые многочлены, причем b и d – ненулевые.
Чтобы разделить одну алгебраическую дробь на другую, нужно первую дробь умножить на дробь, обратную второй. То есть, деление алгебраических дробей выполняется следующим образом , где a, b, c и d – некоторые многочлены, причем b, c и d – ненулевые.
Здесь стоит обратить внимание на то, что под алгебраической дробью, обратной данной, понимают такую дробь, произведение которой с исходной тождественно равно единице. То есть, взаимно обратные алгебраические дроби определяются аналогично взаимно обратным числам. И из того, как мы определили умножение алгебраических дробей, следует, что взаимно обратные алгебраические дроби различаются тем, что у них числители и знаменатели переставлены местами. Например, обратной к алгебраической дроби будет дробь .
Пошаговое объяснение:
1) 5*3*3*13
2)а)3 б)6 в)3 г)7
3) Простые множители числа 98 это 2, 7, 7. А простые множители числа 665 это 5, 7, 19. Ни одни из них не совпадают
1)2*2*3*3*7*11
2)4)=30; 5)=60; 6)=182; 1)=315; 2)=46; 3)=24
1)2*3*3*3*1; 2*2*2*2*7*1; 2*5*3*7*13*1
2)105 = 3*5*7
286 = 2*11*13
НОД (105;286) = 1, значит они взаимно простые
3)Разложим на простые множители 36
36 =2*2*3*3
Разложим на простые множители 45
45=3*3*5
Найдем произведение одинаковых простых множителей 3*3
НОД (36; 45) = 3*3=9
4)14 = 2 * 7 - простые множители числа
12 = (2*2) * 3 - простые множители числа
НОК (14 и 12) = (2*2) * 3 * 7 = 84 - наименьшее общее кратное
84 + 84 = 168 - общее кратное 14 и 12
168 + 84 = 252 - общее кратное 14 и 12
и т.д. + 84 ... - общее кратное 14 и 12
84 и 168 не превышают 170
84 + 168 = 252 - сумма общих кратных, не превышающих 170.
ответ: 252.
Подробнее - на -
Пошаговое объяснение:
2) 28-19=9
3) 16-16=0