М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Асель1139
Асель1139
17.03.2022 23:01 •  Математика

Єдва сплави олова та свинцю. перший сплав містить 5% олова, а другий 40% олова. їх разом сплавили і отримали новий сплав масою 210 г, який містить 30% олова. скільки грамів першого сплаву було взято?

👇
Ответ:
Misha31071986
Misha31071986
17.03.2022
Х-масса 1го сплава
у- второго
5%=5/100=0,05 в долях единицы
40%=40/100=0,4 в долях единицы
Система уравнений
Первое
х+у=210
у=210-х

Второе
0,05х+0,4у       30                      умножим на 10
=
210                  100

0,05х+0,4у       30
=
21                    10

0,05х+0,4у       
= 3
21                    

0,05х+0,4у  =21*3
0,4у=63-0,05х
у=(63-0,05х)/0,4
у=157,5-0,125х

157,5-0,125х=210-х
х-0,125х=210-157,5
0,875х=52,5
х=52,5/0,875=52500/875=2100/35=420/7=60г-масса 1го сплава
4,4(43 оценок)
Ответ:
tanusik32
tanusik32
17.03.2022
Хг-5% сплава
210-хг-40% сплава
х*5/100+(210-х)*40/100=210*30/100
5х+8400-40х=6300
35х=2100
х=2100:35
х=60г-5% сплава
4,8(1 оценок)
Открыть все ответы
Ответ:
mariamarkova609
mariamarkova609
17.03.2022

14.4 см

Пошаговое объяснение:

Побудуємо прямокутник ABCD, та проведемо в ньому діагоналі АС і BD, а також висоту DO до діагоналі АС і висоту EK із точки перетину діагоналей до більшої сторони AD.

Приймемо, що ОС=х,

тоді АС=4х.

Так як діагоналі прямокутника рівні і точкою перетину діляться навпіл, то АЕ=СЕ=ЕD=2х

і OE=CE-OC ⇒ OE=2x-x ⇒ OE=x.

Так як точка перетину діагоналей прямокутника є його геометричним центром, то CD=2EK=7.2 см.

Тоді, із прямокутного ΔCDO маємо:

OD²=CD²-OC² ⇒ OD²=51.84 - x²

Із прямокутного ΔEDO маємо:

OD²=ED²-OE² ⇒ OD²=4x² - x² ⇒ OD²=3x²

Отримуємо вираз:

51.84 - x² = 3x²

4x²=51.84

x=3.6

Тоді довжина діагоналі:

АС=4х=14.4 см


Перпендикуляр опущенный із вершини прямокутника на діагональ ділить її у відношенні 1: 3. знайдіть д
4,4(72 оценок)
Ответ:
vaynasmirnov021
vaynasmirnov021
17.03.2022

Zadanie 4 (Задание 4)

Найдите количество деревьев на n вершинах, в которых степень каждой вершины не больше 2.

n=1 => дерево состоит из одной вершины степени 0.

n>=2 => 1] Вершины степени 0 быть не может (иначе граф несвязный). Значит степень вершин либо 1, либо 2. 2] существует простая цепь, являющаяся подграфом дерева.

Тогда будем достраивать дерево из цепи. Ребро - простая цепь.

Алгоритм:

Изначально есть ребро <u,v>. Степени концов цепи - вершин u и v - равны 1.

Если на данном шаге число вершин в графе равно n - получен один из искомых графов, больше его не изменяем.

Если же число вершин < n, добавляем ребро.

На 1ом шаге мы можем добавить либо ребро <u,a>, либо ребро <a,v>. Без нарушения общности, добавим <u,a>. У нас все еще простая цепь. При этом у концов a и v степень 1, а у всех остальных вершин, здесь это вершина u, - 2, и к ним ребра присоединить уже нельзя. Повторяя подобные операции, будем получать на каждом шаге простую цепь.

На n вершинах можно построить ровно одну простую цепь. А значит и число искомых деревьев равно 1 .

Zadanie 5 (Задание 5)

Покажите, что для графа G=[V,E] с k компонентами связности верно неравенство |V|-k\leq |E|\leq \left(\begin{array}{c}|V|-k\\2\end{array}\right)

Введем обозначения |V|=n, |E|=m

Разобьем граф на компоненты связности. Для каждой компоненты, очевидно, верно неравенство m_i\geq n_i-1. Просуммировав неравенства для каждой из k компонент, получим m\geq n-k.

Оценка снизу получена.

Лемма: Граф имеет максимальное число ребер, если он имеет k-1 тривиальную компоненту связности и 1 компоненту, являющуюся полным графом. И действительно. Пусть K_{n_1}, K_{n_2} – компоненты связности, 1. Тогда при "переносе" одной вершины из K_{n_1} в K_{n_2} число ребер увеличится на n_2-(n_1-1)0 – а значит такая "конфигурация" неоптимальная, и несколькими преобразованиями сводится к указанной в лемме. А тогда максимальное число ребер в графе равно \left(\begin{array}{c}|V|-k\\2\end{array}\right) Оценка сверху получена.

Zadanie 6 (Задание 6)

Проверьте, являются ли следующие последовательности графическими, обоснуйте ответ​

Решение в приложении к ответу


Плата Очень нужна математика дискретная Задание 4).Найдите количество деревьев с n вершинами, в кото
4,8(89 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ