ответ: a) tgα=-4/3 Б)
Пошаговое объяснение:А) Cosα=-0,6 90°<α<180° (2 четверть); 1+tg²α=1/Cos²α ⇒ tg²α= 1/Cos²α -1 = 1/(-0,6)² - 1= 1/0,36 - 1= 100/36 - 1= 25/9 - 1= 25/9 - 9/9= 16/9, ⇒ tgα=±√√16/9=±4/3
Но 90°<α<180°, во 2 четверти tgα<0, значит tgα=-4/3
Б) sinα,cosα, tgα, ctgα, если sinα=12/13 при п/2 (условие некорректно записано)
Если Sinα= 12/13, то Сos²α=1- Sin²α= 1- (12/13)²=1- 144/169= 25/169 Значит Cosα=±√25/169= ±5/13
Если π/2 <α<π , то Сosα<0, значит Cosα=-5/13;
tgα=Sinα/Cosα = 12/13 : (-5/13)= - 12/5 =-2,4
ctgα=1/tgα= 1: (-12/5)= - 5/12
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.Рассмотрим дополнение графа знакомств в полном графе -- это удобно, так как рёбер мало. Степень каждой вершины не больше 2, и в графе нет треугольников. Рассмотрим связную компоненту. Это или линейный граф (возможно, из одной вершины), или цикл. Будем в каждой компоненте выбирать подмножество вершин, в котором нет соединений. Если мы в сумме наберём 12 человек, то задача решена: представители разных компонент между собой знакомы.
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.Рассмотрим дополнение графа знакомств в полном графе -- это удобно, так как рёбер мало. Степень каждой вершины не больше 2, и в графе нет треугольников. Рассмотрим связную компоненту. Это или линейный граф (возможно, из одной вершины), или цикл. Будем в каждой компоненте выбирать подмножество вершин, в котором нет соединений. Если мы в сумме наберём 12 человек, то задача решена: представители разных компонент между собой знакомы.Для линейного графа раскрасим вершины через одну, и возьмём тот цвет, представителей которого не меньше. Это даст как минимум половину. Если цикл имеет чётную длину, то мы также выбираем половину -- через одного. Наконец, пусть цикл имеет длину 2k+1, где k>=2. Тогда можно взять k человек с номерами 2, 4, ... , 2k. Доля числа взятых равна k/(2k+1)>=2/5. Отсюда следует, что мы можем взять как минимум 2/5 от общего числа, а это и есть 12. Они попарно знакомы.