В начале решения находим точки пересечения линий, они дадут пределы интегрирования. Решим уравнение х² + 1 = х + 3. х² - х -2 = 0, х = 2 или х = -1. Это абсциссы точек пересечения. Считаем координаты точек.(-1;2) и (2;5). Для нахождения площади фигуры,ограниченной линиями находим площадь трапеции, ее основания 2 и 5, а высота 3. S = (2+5)/2*3 =10,5. Найдем площадь фигуры под параболой . Интеграл от -1 до 2 от (х²+1)dx = (1/3х³ + х) подстановка от-1 до 2 = (1/3 *2³ +2) - (1/3 *(-1)³-1) = 6. Теперь от всей трапеции отнимем часть под параболой 10,5 -6 =4,5.
1) log1/2(3x-5)=-1 всё равно что 1/2^(-1)=3x-5, отсюда 3x-5=2, 3x=7, x=7/3 2) Если в обеих частях стоят логарифмы по одному основанию, то их можно убрать 3x-5=x^2-3; x^2-3x+2=0 - квадратное уравнение, корни 1 и 2 3)Возводим основание (2) в степень 2 (после знака равно): 2^2=x^2-3x; x^2-3x-4=0 Корни: -1 и 4
4) Применяем свойство логарифмов: сумма логарифмов равна логарифму от произведения: log2(x)+log2(x-3)=log2(x^2-3x)=2; 2^2=x^2-3x; x^2-3x-4=0 - корни -1 и 4
5)lg - логарифм по основанию 10. Решаем: lg(2x)-2lg(x-3)=0, lg(2x)=lg((x-3)^2) - по свойству логарифмов (мы вносим близстоящий множитель в выражение под логарифмом уже как степень)
2x=(x-3)^2; 2x=x^2-6x+9; x^2-8x-9=0 - квадратное уравнение. Корни: -1 и 9.
Ой, забыл проверочку сделать. Она заключается в том, что выражение под логарифмом должно быть положительным. Почему? Да потому что сколько ты ни возводи основание в степерь, отрицательного числа не получится.
2) Корень 1 не подходит, т. к. 3*1-5=-2 - а так делать нельзя. ответ только 2. 4) Корень -1 не подходит, т. к. под логарифмом получается отрицательное число. 5) Та же история.
Наименьший - со сторонами 6 и 6