1) x(4-x)(x-2) <= 0 Особые точки: 0; 2; 4. Берём любое число, например, 1. 1(4-1)(1-2) = 1*3(-1)<0 Мы даже не вычисляем, важен только знак. Число нам подходит, значит, отрезок [0; 2], в который входит 1, является решением. А ещё решением являются промежутки через один от него. x € [0; 2] U [4; +oo) Остальные делаются точно также. 2) (x+3)(x+1)^2*(x-2) <= 0 Здесь есть квадрат, который =0 в точке x=-1 и >0 во всех остальных точках. Поэтому мы отмечаем x=-1 как решение и убираем эту скобку. (x+3)(x-2) <= 0 x € [-3; 2] Точка x=-1 входит в этот отрезок. x € [-3; 2]
3) Здесь сначала надо сделать справа 0, а потом уже применять метод интервалов. (x+1)/(x+2) - 3 >= 0 (x+1-3x-6)/(x+2) >= 0 (-2x-5)/(x+2) >= 0 Поменяем знак числителя, при этом поменяется знак неравенства. (2x+5)/(x+2) <= 0 x € [-5/2; -2)
О сюжете картины «Последний день Помпеи» Сюжет картины «Последний день Помпеи» взят из античной истории - извержение вулкана Везувий и крушение города Помпеи (II век до н. э.). Всевластие слепого рока - излюбленная тема искусства романтизма. Гибель людей, их смятение и ужас перед надвигающимся крушением города переданы художником в интересной и сложной многофигурной композиции. Театральной эффектностью поз и жестов, разнообразными выражениями лиц, развевающимися драпировками одежд живописец показывает весь драматизм сцены, однако, несмотря на надвигающуюся смерть, герои даже в страдании не теряют красоты и величия духа. В этом заключалась философия и эстетика романтизма. Живопись Брюллова с присущим мастеру упоением красотой формы и торжественностью яркого колорита передаче патетического настроения разворачивающегося действа.
После исполнения этого монументального полотна художник получил европейскую известность. Переехав в конце жизни в Италию, он окончательно обосновался там и стал почетным членом Академий художеств в Милане, Флоренции, Болонье и Академии Святого Луки в Риме.
Пошаговое объяснение:
При сокращении дроби надо делить ее числитель и знаменатель на одно и тоже число до тех пор пока дробь не станет несократимой .
Проще всего сокращать дроби, когда знаешь НОД
Рассмотрим дроби
а) 28/63
НОД (28; 63) = 7;
Сократим числитель и знаменатель на 7
28/63 = 4/9.
б) 34/85
НОД (34; 85) = 17;
Сократим числитель и знаменатель на 17
34/85 = 2/5.
г) 2 62/81
НОД (62; 81) = 1,
Если НОД=1, это говорит о том , что дробь несократимая, значит
2 62/81- несократимая
д) 32/56
НОД (32; 56) = 8;
Сократим на 8
32/56 = 4/7