1.
\begin{gathered} < var > \\y=e-\ln x\\ y'=-\frac{1}{x}\\ < /var > \end{gathered}
<var>
y=e−lnx
y
′
=−
x
1
</var>
2.
\begin{gathered} < var > \\y=\ln(10-5x)\\ y'=\frac{1}{10-5x}\cdot-5\\ y'=\frac{-5}{10-5x}\\ y'=\frac{-5}{5(2-x)}\\ y'=\frac{1}{x-2} < /var > \end{gathered}
<var>
y=ln(10−5x)
y
′
=
10−5x
1
⋅−5
y
′
=
10−5x
−5
y
′
=
5(2−x)
−5
y
′
=
x−2
1
</var>
3.
\begin{gathered} < var > \\y=3-4\ln (1-x)\\ y'=-4\cdot\frac{1}{1-x}\cdot(-1)\\ y'=-\frac{4}{x-1} < /var > \end{gathered}
<var>
y=3−4ln(1−x)
y
′
=−4⋅
1−x
1
⋅(−1)
y
′
=−
x−1
4
</var>
4.
\begin{gathered} < var > \\y=\ln \frac{1}{x}\\ y'=\frac{1}{\frac{1}{x}}\cdot(-\frac{1}{x^2})\\ y'=-\frac{x}{x^2}\\ y'=-\frac{1}{x} < /var > \end{gathered}
<var>
y=ln
x
1
y
′
=
x
1
1
⋅(−
x
2
1
)
y
′
=−
x
2
x
y
′
=−
x
1
</var>
5.
\begin{gathered} < var > \\y=1-3^x\\ y'=-3^x \ln 3 < /var > \end{gathered}
<var>
y=1−3
x
y
′
=−3
x
ln3</var>
пусть скорость течения реки равна х км/ч. тогда скорость катера по течению (19+х) км/ч, скорость против течения (19-х) км/ч.расстояние в 15 км по течению катер пройдет за 15/(19+х) часов, а то же расстояние, но против течения, за 15/(19-х) часов. суммарное время равно 1,5 часа, т.е: 15/(19+х)+15/(19-х)=1,5умножим обе части уравнения на 2(19-х)*(19+х)30*(19-х)+30*(19+х)=3*(19-х)*(19+х).делим на 3 обе части уравнения: 10*(19-х)+10*(19+х)=(19-х)*(19+х)380=361-х^2странный получается результат, вы не находите? x^2=-19 - уравнение не имеет корней, т.е.ни при каких условиях такой катер туда -обратно за это время не проплывет.
1. 180-45=135 (градусов)
2. 180-120=60 (градусов)
3. 180-12=168 (градусов)