М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Vasya1godik
Vasya1godik
20.07.2022 00:36 •  Математика

На блузки израсходовали 115 м ткани, на платья на 40 м больше, чем на блузки, а на детские костюмы на 120 м меньше, чем на блузки и платья вместе. сколько всего м ткани израсходовали?

👇
Ответ:
DarthTyranus
DarthTyranus
20.07.2022


115+40=155(м) израсходовали на платья

на костюмы же израсходовали 155+115-120=150(м)

а теперь вычисляем все 155+150+115=420 (м) ткани


4,5(67 оценок)
Ответ:
fa7b3ar
fa7b3ar
20.07.2022
1) 115+40=155(м)-израсходовали на платья
2)115+155=270(м)-платья и блузки вместе
3)270-120=150(м)-костюмы
4)115+155+150=420(м)-все вместе
ответ:420м
4,6(50 оценок)
Открыть все ответы
Ответ:
Zores
Zores
20.07.2022
РЕШЕНИЕ
Два неизвестных a , b.
Пишем два уравнения.
1) a+b = 48
2) a*40% = 2/9*b
Решим методом подстановки
3) b = 48 - a
4) 0.4*a = 2/9*(48 - a) = 10 2/3 - 2/9*a
Упрощаем
5) (2/5 + 2/9)*а = 10 2/3
Упрощаем
6) 28/45*а = 10 2/3
Находим неизвестное - а
7) а = 32/3 : 28/45 = 17 1/7 - первое число - ОТВЕТ
Находим неизвестное - b
8) b = 48 - a = 48 - 17  1/7 = 30 6/7 - второе число - ОТВЕТ
 Не красивые числа получись - меняем уравнение 2)
2) 2/9*a = 0.4*b 
3) 2/9*a = 0.4*(48 -a) = 19.2 - 2/5*a
4) (2/9 + 2/5)*a = 19.2
5) 28/45*a = 19.2
6) a = 19.2 : 28/45 = 30 6/7 - первое число
7) b = 48 - a = 17 1/7 - второе число
Но ответ от такой замены не изменился. Значит ОТВЕТ правильный.
4,7(2 оценок)
Ответ:
tatblin
tatblin
20.07.2022

Пошаговое объяснение:

1) x^2y' +y^2 = 0, y(-1)=1.

x^2\frac{dy}{dx} = -y^2;

Разделим переменные. При этом мы можем потерять решение y=0, но т.к. оно не удовлетворяет дополнительному условию, то оно не будет являться искомым решением.

-\frac{dy}{y^2}=\frac{dx}{x^2} = \int -\frac{dy}{y^2}=\int \frac{dx}{x^2} = \frac{1}{y} = -\frac{1}{x}+C. Используем дополнительное условие для определения константы:

\frac{1}{1}=-\frac{1}{-1} + C = 1 = 1 +C = C =0 = \frac{1}{y} = -\frac{1}{x} = y=-x

ответ: y=-x

2) xy'+y=3. Так как это уравнение является линейным неоднородным, то решение можно искать в виде суммы общего решения линейного однородного уравнения и частного решения неоднородного уравнений: y=y_o +\bar y

Рассмотрим однородное уравнение:

xy'+y = 0 = xy'=-y = \frac{dy}{dx}=-\frac{y}{x} = \frac{dy}{y}=-\frac{dx}{x} = \ln|y|=-\ln|x|+\ln|C| = \ln|y|=\ln|\frac{C}{x}| = y_o=\frac{C}{x}

(модули можно опустить без знака плюс-минус в следствие произвольности постоянной С. При делении на y мы могли потерять решение y=0, но оно входит в семейство кривых при С=0)

Частное решение неоднородного уравнения легко угадывается: \bar y= 3

Следовательно, общее решение исходного уравнения: y = \frac{C}{x} + 3

ответ: y=\frac{C}{x}+3, C - const

3) xy' + y = x+1, y(1) =0

Данное уравнение отличается от предыдущего только неоднородностью, поэтому нужно просто подобрать другое частное решение, удовлетворяющее неоднородности. Имеет смысл ее искать в виде: \bar y= Ax+B, подставим его в уравнение:

Ax + Ax + B = x +1;

2Ax + B = x + 1;

Два полинома тождественно равны, если равны коэффициенты при соответствующих степенях:

2A = 1, B=1 = A=\frac{1}{2}, B=1 = \bar y = \frac{x}{2}+1

Следовательно, общее решение исходного уравнения: y= \frac{C}{x} +\frac{x}{2}+1

Найдем константу из дополнительного условия:

y(1)=C + \frac{1}{2}+1 = 0 = C = -\frac{3}{2} = y=-\frac{3}{2x}+\frac{x}{2}+1

ответ: y=-\frac{3}{2x}+\frac{x}{2}+1

4) xy'-y=3.

Применим алгоритм из пункта 2

xy'-y = 0 = \frac{dy}{y}=\frac{dx}{x} = \ln|y|=\ln|Cx| = y_o=Cx

Частное решение неоднородного уравнения легко угадывается: \bar y = -3

Следовательно, общее решение исходного уравнения: y= Cx-3

ответ: y=Cx-3, C - const

5) y''-4y'+3y=0.

Имеем дело с линейным однородным уравнением с постоянными коэффициентами. Его частные решения ищутся в виде: y = e^{kx}. Тогда характеристическое уравнение есть

k^2-4k+3 =0 = (k-1)(k-3) =0 = k_1=1, k_2=3.

Общее решение такого уравнения записывается в виде линейной комбинации линейно независимых частных решений, экспоненты с неравными показателями являются линейно независимыми:

y=C_1e^x+C_2e^{3x}

ответ: y=C_1e^x+C_2e^{3x}, C_{1,2} - const

6) 3y''+5y'+2y=8, y(0)=6, y'(0)=-4

Общее решение является суммой общего решения однородного уравнения и частного решения неоднородного. Рассмотрим однородное: 3y''+5y'+2y=0

Характеристическое уравнение: 3k^2+5k+2=0 = 3(k+1)(k+\frac{2}{3})=0 = k_1=-1, k_2=-\frac{2}{3}

y_o = C_1e^{-x} + C_2e^{-2x/3}

Частное решение легко угадывается: \bar y = 4

Общее решение: y= C_1e^{-x}+C_2e^{-2x/3}+4

Определим постоянные из дополнительных условий:

\left \{ {{y(0)=C_1+C_2+4=6} \atop {y'(0)=-C_1-\frac{2}{3}C_2 = -4}} \right. = \left \{ {{C_1+C_2=2} \atop {-C_1-\frac{2}{3}C_2 = -4}} \right. = \left \{ {{C_1=8} \atop {C_2=-6}} \right. = y = 8e^{-x} -6e^{-2x/3}+4

ответ: y=8e^{-x}-6e^{-2x/3}+4

4,5(30 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ