М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
wwwzelenruowzl2z
wwwzelenruowzl2z
06.08.2020 04:42 •  Математика

Дина, наташа и анель вызвались переплести книги в школьной библиотеке.они разделили поровну все книги,которые должны переплести. в первый день анель переплела половину всех книг, которые должна была переплести, и еще 3 книги. во второй день анель переплела половину оставшихся книг и еще 5 книг.после этого ей осталось переплести 7 книг. сколько всего книг переплели девочки? сколько книг переплела анель в первый день? сколько книг переплела анель в второй день?

👇
Ответ:
lyuda00777
lyuda00777
06.08.2020
Х- переплела Анель всего (и это треть от общего кол-ва книг)

0,5х+3- переплела Анель в 1й день
х-(0,5х+3)=0,5х-3- осталось
0,5(0,5х-3)+5=0,25х-1,5+5=0,25х+3,5- переплела Анель во 2й день

0,5х+3+0,25х+3,5+7=х
0,75х+13,5=х
х-0,75х=13,5
0,25х=13,5
х=13,5/0,25=54 книги переплела Анель

54*3=162 книг всего переплели девочки
0,5*54+3=30 книг-переплела Анель в 1й день
0,25*54+3,5=17 книг-переплела Анель во 2й день
4,6(79 оценок)
Открыть все ответы
Ответ:
malina20023
malina20023
06.08.2020

формулы площади треугольника

треугольник

формула площади треугольника по стороне и высоте

площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты

s =   1 a · h

2

формула площади треугольника по трем сторонам  

формула герона

s = √p(p - a)(p - b)(p - c)

формула площади треугольника по двум сторонам и углу между ними  

площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

s =   1 a · b · sin γ

2

формула площади треугольника по трем сторонам и радиусу описанной окружности

s =   a · b · с

4r

формула площади треугольника по трем сторонам и радиусу вписанной окружности

площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

s = p · r

где s - площадь треугольника,

a, b, c - длины сторон треугольника,

h - высота треугольника,

γ - угол между сторонами a и b,

r - радиус вписанной окружности,

r - радиус описанной окружности,

p =   a + b + c   - полупериметр треугольника.

2

формулы площади квадрата

квадрат

формула площади квадрата по длине стороны

площадь квадрата равна квадрату длины его стороны.

s = a2

формула площади квадрата по длине диагонали

площадь квадрата равна половине квадрата длины его диагонали.

s =   1 d2

2

где s - площадь квадрата,

a - длина стороны квадрата,

d - длина диагонали квадрата.

формула площади прямоугольника

прямоугольник

площадь прямоугольника равна произведению длин двух его смежных сторон

s = a · b

где s - площадь прямоугольника,

a, b - длины сторон прямоугольника.

вы можете воспользоваться онлайн калькулятором для расчета площади прямоугольника.

формулы площади параллелограмма

параллелограмм

формула площади параллелограмма по длине стороны и высоте

площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.

s = a · h

формула площади параллелограмма по двум сторонам и углу между ними

площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

s = a · b · sin α

формула площади параллелограмма по двум диагоналям и углу между ними

площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.

s =   1 d1d2 sin γ

2

где s - площадь параллелограмма,

a, b - длины сторон параллелограмма,

h - длина высоты параллелограмма,

d1, d2 - длины диагоналей параллелограмма,

α - угол между сторонами параллелограмма,

γ - угол между диагоналями параллелограмма.

формулы площади ромба

ромб

формула площади ромба по длине стороны и высоте

площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

s = a · h

формула площади ромба по длине стороны и углу

площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

s = a2 · sin α

формула площади ромба по длинам его диагоналей

площадь ромба равна половине произведению длин его диагоналей.

s =   1 d1 · d2

2

где s - площадь ромба,

a - длина стороны ромба,

h - длина высоты ромба,

α - угол между сторонами ромба,

d1, d2 - длины диагоналей.

формулы площади трапеции

трапеция

формула герона для трапеции

s =   a + b √(p-a)(p-b)(p-a-c)(p-a-d)

|a - b|

формула площади трапеции по длине основ и высоте  

площадь трапеции равна произведению полусуммы ее оснований на высоту  

s =   1 (a + b) · h

2

где s - площадь трапеции,

a, b - длины основ трапеции,

c, d - длины боковых сторон трапеции,

p =   a + b + c + d   - полупериметр трапеции.

2

формулы площади выпуклого четырехугольника

выпуклый четырехугольник

формула площади четырехугольника по длине диагоналей и углу между ними площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними:

s =   1 d1 d2 sin α

2

где s - площадь четырехугольника,

d1, d2 - длины диагоналей четырехугольника,

α - угол между диагоналями четырехугольника.

формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности)  

площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружности

s = p · r

выпуклый четырехугольник

формула площади четырехугольника по длине сторон и значению противоположных углов

s = √(p - a)(p - b)(p - c)(p - d) - abcd cos2θ

где s - площадь четырехугольника,

a, b, c, d - длины сторон четырехугольника,

p =   a + b + c + d 2   - полупериметр четырехугольника,

θ =   α + β 2   - полусумма двух противоположных углов четырехугольника.

формула площади четырехугольника, вокруг которого можно описать окружность

s = √(p - a)(p - b)(p - c)(p - d)

формулы площади круга

круг

формула площади круга через радиус

площадь круга равна произведению квадрата радиуса на число пи.

s = π r2

формула площади круга через диаметр

площадь круга равна четверти произведения квадрата диаметра на число пи.

s =   1 π d2

4

где s - площадь круга,

r - длина радиуса круга,

d - длина диаметра круга.

4,5(8 оценок)
Ответ:
alsusarip
alsusarip
06.08.2020

\displaystyle f(z)=2+\sum\limits^\infty_{n=1}\dfrac{\dfrac12i^n\Big(i\cdot n\cdot\big(-1+(-1)^n\big)+2 \big(1+(-1)^n\big)\Big)(z-2)^n}{n!}

или проще

f(z)=2+(z-2)-(z-2)^2-\dfrac12(z-2)^3+\dfrac1{12}(z-2)^4+\dfrac1{24}(z-2)^5+...

Пошаговое объяснение:

Вспомним формулу для разложения функции в ряд Тейлора

\displaystyle f(x)=\sum\limits^\infty_{n=0}\dfrac{f^{(n)}(a)(x-a)^n}{n!}=f(a)+f'(a)(x-i)+\frac12f''(a)(x-i)^2+...

1 Запишем функцию

f(z)=z\cos(z-2)

2 Найдем несколько производных:

f(z)=z\cos(z-2)

f(z)'=\big(z\cos(z-2)\big)'=\cos(z-2)-x\sin(z-2)

f(z)''=\big(z\cos(z-2)\big)''=\big(\cos(z-2)-x\sin(z-2)\big)'=-2\sin(z-2)-z\cos(z-2)

f^{(3)}(x)=x\sin(x-2)-3\cos(x-2)

...

3 Найдем общий вид производной:

f^{(n)}(z)

У нас в любом случае будет производная произведения, тогда наша производная распадется на какое-то количество слагаемых либо просто синуса, либо просто косинуса и слагаемое с х умноженным на либо синус, либо косинус.

Заметим, что производная синуса равна

\cos^{(n)}(x)=\left\{\begin{array}{ccc}\cos(x),n=4k,k\in\mathbb N_0\\-\sin(x),n=4k+1,k\in\mathbb N_0\\-\cos(x),n=4k+2,k\in\mathbb N_0\\\sin(x),n=4k+3,k\in\mathbb N_0\end{array}\right.

Тогда наше произведение в зависимости от n будет иметь разный вид.

Заметим, что всего различных слагаемых без множителя х будет n штук и все они будут иметь одинаковый знак

\cos^{(n)}(x)=\left\{\begin{array}{ccc}\cos(x),n=4k,k\in\mathbb N_0\\-\sin(x),n=4k+1,k\in\mathbb N_0\\-\cos(x),n=4k+2,k\in\mathbb N_0\\\sin(x),n=4k+3,k\in\mathbb N_0\end{array}\right,~ \cos^{(n+1)}(x)=\left\{\begin{array}{ccc}\cos(x),n=4k-1,k\in\mathbb N_0\\-\sin(x),n=4k,k\in\mathbb N_0\\-\cos(x),n=4k+1,k\in\mathbb N_0\\\sin(x),n=4k+2,k\in\mathbb N_0\end{array}\right,И по содержанию, и по знаку наши функции будут одинаковые. Осталось посчитать этот знак.

При n одинаковой четности знак один и тот же, в данной точке функция имеет вид

\left\{\begin{array}{ccc}+\cos(0)\\-\sin(0)\\-\cos(0)\\+\sin(0)\end{array}\right.=\left\{\begin{array}{ccc}+1\\0\\-1\\0\end{array}\right.

(производная \Bigg(x\left\{\begin{array}{ccc}\pm\sin(a)\\\pm\cos(a)\end{array}\right.\Bigg)'=\left\{\begin{array}{ccc}\pm\sin(a)\\\pm\cos(a)\end{array}\right.+x\left\{\begin{array}{ccc}\pm\cos(a)\\\pm\sin(a)\end{array}\right. меняет местами функции)

Мы можем записать для четных n знак у функции в виде i^n где i - мнимая единица, для нечетных n знак тоже можно записать в виде ее степени i^{n+1}

Для функции без множителя х формула такая (учитывая значения) -1+(-1)^n - мы должны будем еще умножить на степень для нечетных и также умножить на n (n раз брали производную)

Для функции со множителем формула другая

1+(-1)^n

Чтобы избавится от ненужных двоек в первом случае, умножим все на \dfrac12, и для того, чтобы все осталось как прежде во 2 случае, умножим только его часть на 2

Тогда общая формула производной имеет вид

f^{(n)}(2)=\dfrac12\Big(i^{n+1}\cdot n\cdot\big(-1+(-1)^n\big)\Big)+i^n\big(1+(-1)^n\big)

Можем вынести множитель \dfrac12i^n за скобки

f^{(n)}(x)=\dfrac12i^n\Big(i\cdot n\cdot\big(-1+(-1)^n\big)+2\big(1+(-1)^n\big)\Big)

4 Тогда запишем ряд Тейлора

\displaystyle f(z)=f(2)+\sum\limits^\infty_{n=1}\dfrac{\dfrac12i^n\Big(i\cdot n\cdot\big(-1+(-1)^n\big)+2\big(1+(-1)^n\big)\Big)(z-2)^n}{n!}

Начинаю с 1 так как писалась формула производной от 1.

f(2) = 2 * cos ( 2-2 ) = 2 * 1 = 2

\displaystyle f(z)=2+\sum\limits^\infty_{n=1}\dfrac{\dfrac12i^n\Big(i\cdot n\cdot\big(-1+(-1)^n\big)+2 \big(1+(-1)^n\big)\Big)(z-2)^n}{n!}

Это и есть ответ

4,7(49 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ