М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Daavv33
Daavv33
11.12.2020 14:24 •  Математика

Не могу понять. 5-6 класс. тема умножение и его свойства. из города а выехал автомобиль со скоростью 85км\ч. навстречу ему одновременно из города в выехал другой автомобиль со скоростью 105 км\ ч. через 4 ч. они встретились в городе с. найдите расстояние между а и с, в и с, а и в. (заранее )

👇
Ответ:
sasha1836
sasha1836
11.12.2020
До города С один проехал 105*4=420 км, второй проехал 85*4=340 км. расстояние от А до В 420+340=760 км. от А до С 340 км, от В до С 420 км.
4,4(73 оценок)
Открыть все ответы
Ответ:
lotoskei
lotoskei
11.12.2020
Плоскость, на которой выбрана система координат, называют координатной плоскостью. пусть m — некоторая точка координатной плоскости (рис. 113). проведем через нее прямую ma, перпендикулярную координатной прямой x, и прямую mb, перпендикулярную координатной прямой y. так как точка a имеет координату 6, а точка b — координату -5, то положение точки m определяется парой чисел (6; -5). эту пару чисел называют координатами точки m. число 6 называют абсциссой точки m, а число -5 называют ординатой точки m. координатную прямую x называют осью абсцисс, а координатную прямую y — осью ординат. точку м с абсциссой 6 и ординатой -5 обозначают так: м(6; -5). при этом всегда на первом месте пишут абсциссу точки, а на втором — ее ординату. если переставить координаты местами, то получится другая точка — n (-5; 6), которая показана на рисунке 113. каждой точке м на координатной плоскости соответствует пара чисел: ее абсцисса и ордината. наоборот; каждой паре чисел соответствует одна точка плоскости, для которой эти числа являются координатами. на рисунке 114 показано, как попасть в точку c с координатами (-4; -3): сначала надо пройти по оси x от начала отсчета влево на 4 единицы, а потом — на 3 единицы вниз. в положение точек на земной поверхности тоже определяют двумя числами — координатами: широтой и долготой.
4,4(80 оценок)
Ответ:
SofiDu
SofiDu
11.12.2020

Введемо поняття первісної  функції та невизначеного інтеграла, розглянемо основні іх властивості.

Функція  F(x) називається первісною функції  f(x) на даному проміжку, якщо для будь-якого x  з цього проміжку  F‘(x) = f(x).

Наприклад

Перевірити, чи буде функція  F(x)=sinx+2,5x2 первісною функції  f(x)= cosx+5х на множині дійсних чисел?

Знайдемо похідну функції  F(x),  F‘(x) = cosx+2,5*2х, отже F(x) називається первісною функції  f(x) на множині дійсних чисел

Основна властивість первісної

Якщо функція F(x) є первісною для функції  f(x) на даному проміжку, а  C  – довільна стала, то  F(x)+C  є також первісною для функції  f(x), при цьому будь-яка первісна для функції  f(x) на даному проміжку може бути записана у вигляді F(x)+C , де С – довільна стала.

Первісна

 

Графіки будь-яких первісних одержуються один з одного паралельним перенесенням уздовж осі ОУ.

Наприклад, розв’яжемо задачу:

Для функції  f(x)=–x2+3x обчисліть первісну,  графік якої проходить через точку  М(2;-1).

Розв’язання

Знайдемо загальний вигляд первісної даної функції:

F(x)=-x3/3+3 x2/2 +С.                                       (1)

Оскільки графік шуканої первісної задовольняє рівнянню (1), підставимо в рівняння замість аргументу значення 2,  замість функції значення -1, матимемо:

-1=-8/3+6 +С,

Отже С=-13/3.

Шукана первісна матиме вигляд: F(x)=-x3/3+3 x2/2 -13/3

Невизначений інтеграл

Первісна. Інтеграл

 

Таблиця первісних (невизначених інтегралів)

Первісна. Таблиця інтегралів

Приклади знаходження невизначених інтегралів:

Первісна. Інтеграл

ІНТЕГРАЛПЕРВІСНАПОЧАТКИ АНАЛІЗУФУНКЦІЯ

Навігація по записам

ПОПЕРЕДНІЙ ЗАПИС

Похідна функції, її геометричний та механічний зміст

НАСТУПНИЙ ЗАПИС

Геометричний зміст і означення визначеного інтеграла

ЗАЛИШИТИ ВІДПОВІДЬ

Ваша e-mail адреса не оприлюднюватиметься. Обов’язкові поля позначені *

Коментар

Ім'я *

Email *

Сайт

Цей сайт використовує Akismet для зменшення спаму. Дізнайтеся, як обробляються ваші дані коментарів.

ТЕСТИ ЗНО ОНЛАЙН

На сайті osvita.ua можна пройти тестування ЗНО за текстами попередніх років онлайн

Тематичні тренувальні тести для підготовки до ЗНО з математики

ОСТАННІ ПУБЛІКАЦІЇ

Первісна та інтеграл

09.05.2020

Логарифмічні рівняння та нерівності

09.05.2020

Показникові рівняння та нерівності

07.05.2020

Куля і сфера

16.04.2020

Дослідження функції за до похідної у завданнях з параметрами

Пошаговое объяснение:

4,8(69 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ