Пусть первая цифра а, третья с. Тогда вторая (а + с) / 2. Само число 100а + (а + с) / 2 * 10 + с = 105а + 6с. 102а + 6с делится на 6, поэтому вычтем это. Остается 3а. Так как остаток не нулевой, а - нечетно, и остаток 3а равен 3. Теперь из числа вычтем 99а, так как это делится на 11. Получим 6а + 6с = 6(а + с) = 12 (а + с) / 2. Так как (а + с) / 2 целое число, вычтем 11 (а + с) / 2. Получаем (а + с) / 2 - 3 делится на 11. Но (а + с) / 2 меньше 10, поэтому принимает единственное подходящее значение 6 ((а + с) / 2 - 3 = 0). Тогда получаем три случая: а = 1, с = 5, число 135 а = 3, с = 3, число 333 а = 5, с = 1, число 531 Это все числа, удовлетворяющие условиям
Задачи на принцип Дирихле решаются так, что все элементы надо разложить по ящикам. Среди шести любых различных чисел найдутся по крайней мере два числа, которые при делении на 5 дают одинаковые остатки. При делении на 5 получаются остатки: 0 1 2 3 4 Это и есть ящики. Если все шесть чисел дают разные остатки, то поместив их в пять ящиков, шестое число мы вынуждены будем положить в один из имеющихся ящиков. Таким образом, найдутся два числа которые при делении на 5 дадут одинаковые остатки. Обозначим их (5k+m) и (5n+m) Тогда их разность (5k+m)-(5n+m)=5k-5n=5(k-n) - кратна 5
- y = 22 + 41 - 87
- y = - 24
y = 24