М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bbbbbbbbbb2
bbbbbbbbbb2
23.06.2022 12:08 •  Математика

Решить ребус: kk+я=ярр, (одинаковым буквам соответствуют одинаковые цифры, разным разные. запиши число, которое получилось в сумме.

👇
Ответ:
ma4newarita
ma4newarita
23.06.2022
К-9 я-1
получиться 99 +1 =100
р -0
4,6(51 оценок)
Открыть все ответы
Ответ:
иосиф19
иосиф19
23.06.2022

Областью определения сложных функций y=f1(f2(x)) является пересечение двух множеств: x∈D(f2) и множества всех x, для которых f2(x) ∈ D(f1). Следовательно, для того чтобы найти область определения сложной функции, необходимо решить систему неравенства.

Преимуществом онлайн калькулятора является то, что Вам нет необходимости знать и понимать, как находить область определения функции. Чтобы получить ответ, укажите функцию, для которой Вы хотите найти область определения. Основные примеры ввода функций и переменных для данного калькулятора указаны ниже.

Примеры функций: sqrt(16-ln(x^2))/sin(x)) или (5x^7+4x^6-3)/((3+2x-x^2)x^4)

4,5(55 оценок)
Ответ:
123456sa
123456sa
23.06.2022

f(x) = (5^{x} - 65)(5^{x} + 15)

Уравнение касательной имеет вид:

y = f'(x_{0})(x - x_{0}) + f(x_{0}),

где x_{0} —  абсцисса точки графика функции f(x_{0}), к которому проведена касательная y.

Так как график касательной имеет вид график прямой линейной функции y = kx + b, а по условию она должна быть горизонтальной, значит, это частый случай линейной функции — y = b

Таким образом, касательная будет горизонтальной, если k=f'(x_{0}) = 0

Найдем f'(x):

f'(x) = ((5^{x} - 65)(5^{x} + 15))' = (5^{x} - 65)'(5^{x} + 15) + (5^{x} + 15)'(5^{x} - 65) =\\= 5^{x}\ln 5 (5^{x} + 15) + 5\ln 5(5^{x} - 65) = 5^{x}\ln 5(5^{x} + 15 + 5^{x} - 65) =\\= 5^{x}\ln 5(2 \cdot 5^{x} - 50)

Найдем f'(x) = 0:

5^{x}\ln 5(2 \cdot 5^{x} - 50) = 0

\displaystyle \left [ {{5^{x} \ln 5 = 0 \ \ \ \ \ } \atop {2 \cdot 5^{x} - 50 = 0}} \right.

\displaystyle \left [ {{5^{x}= 0\ \ } \atop {5^{x} = 25}} \right.

\displaystyle \left [ {{x \in \varnothing } \atop {x = 2 }} \right.

Следовательно, x_{0} = 2 — абсцисса точки графика функции f(x), к которому проведена касательная y.

Найдем значение f(x_{0}):

f(2) = (5^{2} - 65)(5^{2} + 15) = (25 - 65)(25 + 15) = -40 \cdot 40 = -1600

Таким образом, y = -1600 — уравнение горизонтальной касательной к графику функции f(x) = (5^{x} - 65)(5^{x} + 15)

ответ: y = -1600

4,6(76 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ