Перед нами картина известного русского художника В.М.Васнецова "Снегурочка". У меня эта картина вызывает разные чувства. С одной стороны, зимний лес - это всегда что-то красивое и загадочное. Но лес, изображенный на этой картине, не вызывает у меня восхищения. Деревья стоят голые и какие-то одинокие и грустные. Снег не искрится на солнце, а просто лежит толстым слоем, ведь следы снегурочки глубокие. На заднем плане лес серый, невеселый и не сказочный. Единтвенное, что привлекает меня на этой картине - это изображение девушки. Художник талантливо нарисовал эту молодую красавицу. Мы видим красивую богатую шубу, но она тоже выполнена в спокойных и не ярких тонах. А вот лицо снегурочки, мне кажется, тревожным, как будто она кого-то потеряла и вышла на поиски. Мне кажется, она прислушивается к звукам леса. Картина, несомненно, прекрасна, но тревожное чувство не покидает меня, когда я на нее смотрю.
Пусть вершины треугольника: А(-1;5), В(4;4) и С(6;-1). Площадь треугольника ABC - это половина площади параллелограмма, построенного на векторах АВ и АС. Площадь параллелограмма, построенного на векторах АВ и АС, это МОДУЛЬ векторного произведения этих векторов. Найдем координаты векторов АВ и АС. Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА. Тогда вектор AB{5;-1}, вектор АС{7;-6}. Формула векторного произведения векторов, это определитель: |i j k | [а*b]= |ax ay az| = i(ay*bz-az*by) - j(ax*bz-az*bx) + k(ax*by-ay*bx). |bx by bz| Найдем векторное произведение векторов АВ{5;-1;0} и AC{7;-6;0}: |i j k| [АВ*AС]= |5 -1 0| = i(0-0) - j(0-0) + k(-30-(-7)) = -23. |7 -6 0| Модуль этого произведения равен 23, а его половина равна 11,5. ответ: площадь треугольника Sabc = 11,5.
Для проверки. Есть формула вычисления площади треугольника, заданного координатами вершин на плоскости: S=0,5[(Xa-Xc)(Yb-Yc)-(Xb-Xc)(Ya-Yc)]. (берется положительное значение, то есть модуль ответа) В нашем случае Sabc=0,5*[(-35)-(-12)]=11,5.
Пусть вершины треугольника: А(-1;5), В(4;4) и С(6;-1). Площадь треугольника ABC - это половина площади параллелограмма, построенного на векторах АВ и АС. Площадь параллелограмма, построенного на векторах АВ и АС, это МОДУЛЬ векторного произведения этих векторов. Найдем координаты векторов АВ и АС. Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА. Тогда вектор AB{5;-1}, вектор АС{7;-6}. Формула векторного произведения векторов, это определитель: |i j k | [а*b]= |ax ay az| = i(ay*bz-az*by) - j(ax*bz-az*bx) + k(ax*by-ay*bx). |bx by bz| Найдем векторное произведение векторов АВ{5;-1;0} и AC{7;-6;0}: |i j k| [АВ*AС]= |5 -1 0| = i(0-0) - j(0-0) + k(-30-(-7)) = -23. |7 -6 0| Модуль этого произведения равен 23, а его половина равна 11,5. ответ: площадь треугольника Sabc = 11,5.
Для проверки. Есть формула вычисления площади треугольника, заданного координатами вершин на плоскости: S=0,5[(Xa-Xc)(Yb-Yc)-(Xb-Xc)(Ya-Yc)]. (берется положительное значение, то есть модуль ответа) В нашем случае Sabc=0,5*[(-35)-(-12)]=11,5.